Digital Commons @ University of South Florida

  • USF Research
  • USF Libraries

Digital Commons @ USF > College of Engineering > Mechanical Engineering > Theses and Dissertations

Mechanical Engineering Theses and Dissertations

Theses/dissertations from 2023 2023.

Metachronal Locomotion: Swimming, Scaling, and Schooling , Kuvvat Garayev

A Human-in-the-Loop Robot Grasping System with Grasp Quality Refinement , Tian Tan

Theses/Dissertations from 2022 2022

Health Effects of Oil Spills and Dispersal of Oil Droplets and Zooplankton by Langmuir Cells , Sanjib Gurung

Estimating the As-Placed Grout Volume of Auger Cast Piles , Tristen Mee

Hybrid RANS-LES Hemolytic Power Law Modeling of the FDA Blood Pump , Joseph Tarriela

Theses/Dissertations from 2021 2021

Dynamic Loading Directed Neural Stem Cell Differentiation , Abdullah Revaha Akdemir

An Investigation of Cross-links on Crystallization and Degradation in a Novel, PhotoCross-linkable Poly (Lactic Acid) System , Nicholas Baksh

A Framework to Aid Decision Making for Smart Manufacturing Technologies in Small-and Medium-Sized Enterprises , Purvee Bhatia

Formation of Gas Jets and Vortex Rings from Bursting Bubbles: Visualization, Kinematics, and Fluid Dynamics , Ali A. Dasouqi

Development of Carbon and Silicon Carbide Based Microelectrode Implantable Neural Interfaces , Chenyin Feng

Sulfate Optimization in the Cement-Slag Blended System Based on Calorimetry and Strength Studies , Mustafa Fincan

Interrelation of Thermal Stimulation with Haptic Perception, Emotion, and Memory , Mehdi Hojatmadani

Modeling the Ambient Conditions of a Manufacturing Environment Using Computational Fluid Dynamics (CFD) , Yang Liu

Flow Visualization and Aerosol Characterization of Respiratory Jets Exhaled from a Mannequin Simulator , Sindhu Reddy Mutra

A Constitutive-Based Deep Learning Model for the Identification of Active Contraction Parameters of the Left Ventricular Myocardium , Igor Augusto Paschoalotte Nobrega

Sensible/Latent Hybrid Thermal Energy Storage for the Supercritical Carbon Dioxide Brayton Cycle , Kelly Osterman

Evaluating the Performance of Devices Engineering to Quantify the FARS Test , Harsh Patel

Event-Triggered Control Architectures for Scheduling Information Exchange in Uncertain and Multiagent Systems , Stefan Ristevski

Theses/Dissertations from 2020 2020

Experimental Investigation of Liquid Height Estimation and Simulation Verification of Bolt Tension Quantification Using Surface Acoustic Waves , Hani Alhazmi

Investigation of Navigation Systems for Size, Cost, and Mass Constrained Satellites , Omar Awad

Simulation and Verification of Phase Change Materials for Thermal Energy Storage , Marwan Mosubah Belaed

Control of a Human Arm Robotic Unit Using Augmented Reality and Optimized Kinematics , Carlo Canezo

Manipulation and Patterning of Mammalian Cells Using Vibrations and Acoustic Forces , Joel Cooper

Stable Adaptive Control Systems in the Presence of Unmodeled and Actuator Dynamics , Kadriye Merve Dogan

The Design and Development of a Wrist-Hand Orthosis , Amber Gatto

ROBOAT - Rescue Operations Bot Operating in All Terrains , Akshay Gulhane

Mitigation of Electromigration in Metal Interconnects Passivated by Ångstrom-Thin 2D Materials , Yunjo Jeong

Swimming of Pelagic Snails: Kinematics and Fluid Dynamics , Ferhat Karakas

Functional Gait Asymmetries Achieved Through Modeling and Understanding the Interaction of Multiple Gait Modulations , Fatemeh Rasouli

Distributed Control of Multiagent Systems under Heterogeneity , Selahattin Burak Sarsilmaz

Design and Implementation of Intuitive Human-robot Teleoperation Interfaces , Lei Wu

Laser Micropatterning Effects on Corrosion Resistance of Pure Magnesium Surfaces , Yahya Efe Yayoglu

Theses/Dissertations from 2019 2019

Synthesis and Characterization of Molybdenum Disulfide/Conducting Polymer Nanocomposite Materials for Supercapacitor Applications , Turki S. Alamro

Design of Shape-Morphing Structures Consisting of Bistable Compliant Mechanisms , Rami Alfattani

Low Temperature Multi Effects Desalination-Mechanical Vapor Compression Powered by Supercritical Organic Rankine Cycle , Eydhah Almatrafi

Experimental Results of a Model Reference Adaptive Control Approach on an Interconnected Uncertain Dynamical System , Kemberly Cespedes

Modeling of Buildings with Electrochromic Windows and Thermochromic Roofs , Hua-Ting Kao

Design and Testing of Experimental Langmuir Turbulence Facilities , Zongze Li

Solar Thermal Geothermal Hybrid System With a Bottoming Supercritical Organic Rankine Cycle , Francesca Moloney

Design and Testing of a Reciprocating Wind Harvester , Ahmet Topcuoglu

Distributed Spatiotemporal Control and Dynamic Information Fusion for Multiagent Systems , Dzung Minh Duc Tran

Controlled Wetting Using Ultrasonic Vibration , Matthew A. Trapuzzano

On Distributed Control of Multiagent Systems under Adverse Conditions , Emre Yildirim

Theses/Dissertations from 2018 2018

Synthesis and Characterization of Alpha-Hematite Nanomaterials for Water-Splitting Applications , Hussein Alrobei

Control of Uncertain Dynamical Systems with Spatial and Temporal Constraints , Ehsan Arabi

Simulation and Optimization of a Sheathless Size-Based Acoustic Particle Separator , Shivaraman Asoda

Simulation of Radiation Flux from Thermal Fluid in Origami Tubes , Robert R. Bebeau

Toward Verifiable Adaptive Control Systems: High-Performance and Robust Architectures , Benjamin Charles Gruenwald

Developing Motion Platform Dynamics for Studying Biomechanical Responses During Exercise for Human Spaceflight Applications , Kaitlin Lostroscio

Design and Testing of a Linear Compliant Mechanism with Adjustable Force Output , William Niemeier

Investigation of Thermal History in Large Area Projection Sintering, an Additive Manufacturing Technology , Justin Nussbaum

Acoustic Source Localization with a VTOL sUAV Deployable Module , Kory Olney

Defect Detection in Additive Manufacturing Utilizing Long Pulse Thermography , James Pierce

Design and Testing of a Passive Prosthetic Ankle Foot Optimized to Mimic an Able-Bodied Gait , Millicent Schlafly

Simulation of Turbulent Air Jet Impingement for Commercial Cooking Applications , Shantanu S. Shevade

Materials and Methods to Fabricate Porous Structures Using Additive Manufacturing Techniques , Mohsen Ziaee

Theses/Dissertations from 2017 2017

Large Area Sintering Test Platform Design and Preliminary Study on Cross Sectional Resolution , Christopher J. Gardiner

Enhanced Visible Light Photocatalytic Remediation of Organics in Water Using Zinc Oxide and Titanium Oxide Nanostructures , Srikanth Gunti

Heat Flux Modeling of Asymmetrically Heated and Cooled Thermal Stimuli , Matthew Hardy

Simulation of Hemiparetic Function Using a Knee Orthosis with Variable Impedance and a Proprioception Interference Apparatus , Christina-Anne Kathleen Lahiff

Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials , Michael S. McCrory

Effects of Microstructure and Alloy Concentration on the Corrosion and Tribocorrosion Resistance of Al-Mn and WE43 Mg Alloys , Hesham Y. Saleh Mraied

Novel Transducer Calibration and Simulation Verification of Polydimethylsiloxane (PDMS) Channels on Acoustic Microfluidic Devices , Scott T. Padilla

Force Compensation and Recreation Accuracy in Humans , Benjamin Rigsby

Experimental Evaluation of Cooling Effectiveness and Water Conservation in a Poultry House Using Flow Blurring ® Atomizers , Rafael M. Rodriguez

Media Velocity Considerations in Pleated Air Filtration , Frederik Carl Schousboe

Orthoplanar Spring Based Compliant Force/Torque Sensor for Robot Force Control , Jerry West

Experimental Study of High-Temperature Range Latent Heat Thermal Energy Storage , Chatura Wickramaratne

Theses/Dissertations from 2016 2016

Al/Ti Nanostructured Multilayers: from Mechanical, Tribological, to Corrosion Properties , Sina Izadi

Molybdenum Disulfide-Conducting Polymer Composite Structures for Electrochemical Biosensor Applications , Hongxiang Jia

Waterproofing Shape-Changing Mechanisms Using Origami Engineering; Also a Mechanical Property Evaluation Approach for Rapid Prototyping , Andrew Jason Katz

Hydrogen Effects on X80 Steel Mechanical Properties Measured by Tensile and Impact Testing , Xuan Li

Application and Analysis of Asymmetrical Hot and Cold Stimuli , Ahmad Manasrah

Droplet-based Mechanical Actuator Utilizing Electrowetting Effect , Qi Ni

Experimental and Computational Study on Fracture Mechanics of Multilayered Structures , Hai Thanh Tran

Designing the Haptic Interface for Morse Code , Michael Walker

Optimization and Characterization of Integrated Microfluidic Surface Acoustic Wave Sensors and Transducers , Tao Wang

Corrosion Characteristics of Magnesium under Varying Surface Roughness Conditions , Yahya Efe Yayoglu

Theses/Dissertations from 2015 2015

Carbon Dioxide (CO 2 ) Emissions, Human Energy, and Cultural Perceptions Associated with Traditional and Improved Methods of Shea Butter Processing in Ghana, West Africa , Emily Adams

Experimental Investigation of Encapsulated Phase Change Materials for Thermal Energy Storage , Tanvir E. Alam

Design Of Shape Morphing Structures Using Bistable Elements , Ahmad Alqasimi

Heat Transfer Analysis of Slot Jet Impingement onto Roughened Surfaces , Rashid Ali Alshatti

Systems Approach to Producing Electrospun Polyvinylidene Difluoride Fiber Webs with Controlled Fiber Structure and Functionality , Brian D. Bell

Self-Assembly Kinetics of Microscale Components: A Parametric Evaluation , Jose Miguel Carballo

Measuring Polydimethylsiloxane (PDMS) Mechanical Properties Using Flat Punch Nanoindentation Focusing on Obtaining Full Contact , Federico De Paoli

A Numerical and Experimental Investigation of Flow Induced Noise In Hydraulic Counterbalance Valves , Mutasim Mohamed Elsheikh

An Experimental Study on Passive Dynamic Walking , Philip Andrew Hatzitheodorou

Use of Anaerobic Adhesive for Prevailing Torque Locking Feature on Threaded Product , Alan Hernandez

Viability of Bismuth as a Green Substitute for Lead in Jacketed .357 Magnum Revolver Bullets , Joel A. Jenkins

A Planar Pseudo-Rigid-Body Model for Cantilevers Experiencing Combined Endpoint Forces and Uniformly Distributed Loads Acting in Parallel , Philip James Logan

Kinematic Control of Redundant Mobile Manipulators , Mustafa Mashali

Passive Symmetry in Dynamic Systems and Walking , Haris Muratagic

Mechanical Properties of Laser-Sintered-Nylon Diamond Lattices , Clayton Neff

Design, Fabrication and Analysis of a Paver Machine Push Bar Mechanism , Mahendra Palnati

Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films , Soukaina Rami

A Technical and Economic Comparative Analysis of Sensible and Latent Heat Packed Bed Storage Systems for Concentrating Solar Thermal Power Plants , Jamie Trahan

Use of FDM Components for Ion Beam and Vacuum Applications , Eric Miguel Tridas

The Development of an Adaptive Driving Simulator , Sarah Marie Tudor

Dual 7-Degree-of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices , Yu-Cheng Wang

Ductility and Use of Titanium Alloy and Stainless Steel Aerospace Fasteners , Jarrod Talbott Whittaker

Advanced Search

  • Email Notifications and RSS
  • All Collections
  • USF Faculty Publications
  • Open Access Journals
  • Conferences and Events
  • Theses and Dissertations
  • Textbooks Collection

Useful Links

  • Rights Information
  • SelectedWorks
  • Submit Research

Home | About | Help | My Account | Accessibility Statement | Language and Diversity Statements

Privacy Copyright

BYU ScholarsArchive

BYU ScholarsArchive

Home > Engineering > Mechanical Engineering > Theses and Dissertations

Mechanical Engineering Theses and Dissertations

Theses/dissertations from 2024 2024.

Application of High-Deflection Strain Gauges to Characterize Spinal-Motion Phenotypes Among Patients with CLBP , Spencer Alan Baker

GPS-Denied Localization of Landing eVTOL Aircraft , Aaron C. Brown

Development of Deployable Arrays for Satellites through Origami-Pattern Design, Modeling, and Optimization , Nathan McKellar Coleman

Investigating Which Muscles are Most Responsible for Tremor Through Both Experimental Data and Simulation , Daniel Benjamin Free

Multiscale Characterization of Dislocation Development During Cyclic Bending Under Tension in Commercially Pure Titanium , Nathan R. Miller

Time-Dependent Strain-Resistance Relationships in Silicone Nanocomposite Sensors , Alex Mikal Wonnacott

Theses/Dissertations from 2023 2023

A Series of Improved and Novel Methods in Computer Vision Estimation , James J. Adams

Experimental Validation of a Vibration-Based Sound Power Method , Trent P. Bates

Detecting Lumbar Muscle Fatigue Using Nanocomposite Strain Gauges , Darci Ann Billmire

Heated Supersonic Jet Characteristics From Far-field Acoustical Measurements , Matthew Austin Christian

Cooperative Navigation of Autonomous Vehicles in Challenging Environments , Brendon Peter Forsgren

Heat Transfer to Rolling or Sliding Drops on Inclined Heated Superhydrophobic Surfaces , Joseph Merkley Furner

Lumbar Skin Strain Fields in the Context of Skin Adhered Wearables , Andrew Kent Gibbons

A Statistical Approach for Analyzing Expectations Alignment Between Design Teams and their Project Stakeholders , Matthew Christian Goodson

Interaction of Natural Convection and Real Gas Radiation Over a Vertical Flat Plate , Nathan Hale

Thermal Atomization of Impinging Drops on Superheated Superhydrophobic Surfaces , Eric Lee

An Inexpensive, 3D Printable, Arduino and BluRay-based, Confocal Laser and Fluorescent Scanning Thermal Microscope , Justin Loose

Gradient-Based Optimization of Highly Flexible Aeroelastic Structures , Taylor G. McDonnell

Dynamic Segmental Kinematics of the Lumbar Spine During Diagnostic Movements , Paul McMullin

Friction and Heat Transfer Modeling of the Tool and Workpiece Interface in Friction Stir Welding of AA 6061-T6 for Improved Simulation Accuracy , Ryan Melander

Designed for Better Control: Using Kinematic and Dynamic Metrics to Optimize Robot Manipulator Design , John R. Morrell

Numerical Evaluation of Forces Affecting Particle Motion in Time-Invariant Pressurized Jet Flow , Donald E. Peterson

Modeling the Influence of Vibration on Flow Through Embedded Microchannels , Joseph S. Seamons

Evaluating Effects of Urban Growth Within the Greater Salt Lake Area on Local Meteorological Conditions Using Urban Canopy Modeling , Corey L. Smithson

Soft Robot Configuration Estimation: Towards Load-Agnostic Soft-Bodied Proprioception , Christian Peter Sorensen

Perfusion Pressure-Flow Relationships in Synthetic Poroelastic Vocal Fold Models , Cooper B. Thacker

Methods for Designing Compact and Deployable Origami-Inspired Flat-Foldable Spacecraft Antennas and Other Systems , Collin Ryan Ynchausti

Theses/Dissertations from 2022 2022

Mechanisms for Improvement of Key Mechanical Properties in Polymer Powder Bed Fusion Processes , Clinton Spencer Abbott

Reformulated Vortex Particle Method and Meshless Large Eddy Simulation of Multirotor Aircraft , Eduardo J. Alvarez

Improving Ideation of User Actions Using a Novel Ideation Method , Thomas L. Ashworth

Temperature and Radiation Measurements in a Pressurized Oxy-Coal Reactor , Dustin Peter Badger

Midfoot Motion and Stiffness: Does Structure Predict Function? , Kirk Evans Bassett

The Effects of Various Inlet Distortion Profiles on Transonic Fan Performance , Andrew Michael Bedke

Optical Observation of Large Area Projection Sintering , Derek Black

Investigations into Pressure Profile and Pressure Control in Wrist-Worn Health Monitoring Devices , Roger McAllister Black

Selecting and Optimizing Origami-Based Patterns for Deployable Space Systems , Diana Stefania Bolanos

Developing an Accurate Simulation Model for Predicting Friction Stir Welding Processes in 2219 Aluminum Alloy , Kennen Brooks

An Augmented Reality Maintenance Assistant with Real-Time Quality Inspection on Handheld Mobile Devices , James Thomas Frandsen

Motion Analysis of Physical Human-Human Collaboration with Varying Modus , Seth Michael Freeman

Effects of Optical Configuration and Sampling Efficiency on the Response of Low-Cost Optical Particle Counters , Brady Scott Hales

Developing Ultra-High Resolution 3D Printing for Microfluidics , Kent Richard Hooper

Controlled Pre-Wetting of Spread Powder and Its Effects on Part Formation and Printing Parameters in Binder Jetting Additive Manufacturing , Colton G. Inkley

Enabling Successful Human-Robot Interaction Through Human-Human Co-Manipulation Analysis, Soft Robot Modeling, and Reliable Model Evolutionary Gain-Based Predictive Control (MEGa-PC) , Spencer W. Jensen

Demonstration of a Transient Hot Wire Measurement System Towards a Carbide-Based Sensor for Measuring the Thermal Conductivity of Molten Salts , Peter Charles Kasper

Measured Spectral, Directional Radiative Behavior of Corrugated Surfaces , Kyle S. Meaker

Modified Transient Hot-Wire Needle Probe for Experimentally Measuring Thermal Conductivity of Molten Salts , Brian N. Merritt

Parametric Models of Maize Stalk Morphology , Michael Alan Ottesen

A Formal Consideration of User Tactics During Product Evaluation in Early-Stage Product Development , Trenton Brady Owens

Airship Systems Design, Modeling, and Simulation for Social Impact , Daniel C. Richards

Sub-Grain Characterization of Slip Activity in BCC Tantalum , Tristan Kirby Russell

Tidally Generated Internal Waves from Dual-Ridge Topography , Ian Derik Sanderson

An Investigation into the Role of Geometrically Necessary Dislocations in Multi-Strain Path Deformation in Automotive Sheet Alloys , Rishabh Sharma

Methods for Engineers to Understand, Predict, and Influence the Social Impacts of Engineered Products , Phillip Douglas Stevenson

Principles for Using Remote Data Collection Devices and Deep Learning in Evaluating Social Impact Indicators of Engineered Products for Global Development , Bryan J. Stringham

Improvement of Ex Vivo Testing Methods for Spine Biomechanical Characterization , Aubrie Lisa Taylor

Gradient-Based Wind Farm Layout Optimization , Jared Joseph Thomas

Material Development Toward an Index-Matched Gadolinium-Based Heterogenous Capture-Gated Neutron Detector , Aaron J. Thorum

Optimization of a Smart Sensor Wearable Knee Sleeve for Measuring Skin Strain to Determine Joint Biomechanics , David Steven Wood

Multi-Material 3D-Printed Silicone Vocal Fold Models , Clayton Adam Young

Theses/Dissertations from 2021 2021

Laser Forming of Compliant Mechanisms and Flat-Foldable Furniture , Daniel Calvin Ames

Effects of Static and Dynamic Thermal Gradients in Gas Chromatography , Samuel Avila

Five Degree-of-Freedom Property Interpolation of Arbitrary Grain Boundaries via Voronoi Fundamental Zone Octonion Framework , Sterling Gregory Baird

Optimization of Solar-Coal Hybridization for Low Solar Augmentation , Aaron T. Bame

Characterizing Behaviors and Functions of Joints for Design of Origami-Based Mechanical Systems , Nathan Chandler Brown

Thermal Transport to Impinging Droplets on Superhydrophobic Surfaces , Jonathan C. Burnett

3D Permeability Characterization of Sheared Fiber Reinforcement for Liquid Composite Molding Process Simulation , Collin William Childs

The Impact of Inkjet Parameters and Environmental Conditions in Binder Jetting Additive Manufacturing , Trenton Miles Colton

Control of Post-Weld Fracture Toughness in Friction Stir Processed X-80 HSLA Steel , Nolan Tracy Crook

Sensitivity of Tremor Propagation to Model Parameters , Charles Paul Curtis Jr.

Feasibility and Impact of Liquid/Liquid-encased Dopants as Method of Composition Control in Laser Powder Bed Fusion , Taylor Matthew Davis

Design Validation of a Multi-Stage Gradually Deploying Stent , Dillon J. Despain

Analysis of Closed-Loop Digital Twin , Andrew Stuart Eyring

Completion and Initial Testing of a Pressurized Oxy-Coal Reactor , Scott Hunsaker Gardner

Method for Creating Subject-specific Models of the Wrist in both Degrees of Freedom Using Measured Muscle Excitations and Joint Torques , Blake Robert Harper

CEDAR: A Dimensionally Adaptive Flow Solver for Cylindrical Combustors , Ty R. Hosler

Modeling Current and Future Windblown Utah Dust Events Using CMAQ 5.3.1 , Zachary David Lawless

Acclimation of Contact Impedance and Wrist-Based Pulsatile Signal Measurements Through Electrical Bioimpedance , Diego A. Leon

Characterizing Bacterial Resistance and Microstructure-Related Properties of Carbon-Infiltrated Carbon Nanotube Surface Coatings with Applications in Medical Devices , Stephanie Renee Morco

Effects of Whole Body Vibration on Inhibitory Control Processes , Bennett Alan Mortensen

Exploration of Constant-Force Wristbands for a Wearable Health Device , Thomas Alexander Naylor

Effect of Ported Shroud Casing Treatment Modifications on Operational Range and Limits in a Centrifugal Compressor , Alexander A. Newell

Considering Social Impact when Engineering for Global Development , Hans Jorgen Ottosson

A New Method of Measuring Flow Stress for Improved Modeling of Friction Stir Welding , David John Prymak

Constrained Nonlinear Heuristic-Based MPC for Control of Robotic Systems with Uncertainty , Tyler James Quackenbush

A Study in Soft Robotics: Metrics, Models, Control, and Estimation , Levi Thomas Rupert

Development of an Origami Inspired Composite Deployable Structure Utilizing Compliant Joints as Surrogate Folds , Samuel Porter Smith

Development and Evaluation of an Improved Microbial Inactivation Model for Analyzing Continuous Flow UV-LED Air Treatment Systems , Cole Holtom Thatcher

Micromechanisms of Near-Yield Deformation in BCC Tantalum , Joshua Jr-Syan Tsai

Effects of Carbon-Infiltrated Carbon Nanotube Growth on the Biocompatibility of 316L Stainless Steel , Sterling Charles Voss

Active Thermography for Additive Manufacturing Processes , Nicholas Jay Wallace

System Identification of Postural Tremor in Wrist Flexion-Extension and Radial-Ulnar Deviation , Sydney Bryanna Ward

Effective Temperature Control for Industrial Friction Stir Technologies , Arnold David Wright

Theses/Dissertations from 2020 2020

Characterization of the Factors Influencing Retained Austenite Transformation in Q&P Steels , Derrik David Adams

Instructional Case Studies in the Field of Windfarm Optimization , N. Francesco Baker

LCM Permeability Characterization Over Mold Curvature , Benjamin Grant Betteridge

Linear and Nonlinear Dimensionality-Reduction-Based Surrogate Models for Real-Time Design Space Exploration of Structural Responses , Gregory David Bird

Electrochemical Sensors Enhanced by Convection and by 3D Arrays of Vertically Aligned Carbon Nanotubes , Benjamin James Brownlee

In Vivo Silicon Lance Array Transfection of Plant Cells , Taylor Andrew Brown

Real Time Design Space Exploration of Static and Vibratory Structural Responses in Turbomachinery Through Surrogate Modeling with Principal Components , Spencer Reese Bunnell

On Creases and Curved Links: Design Approaches for Predicting and Customizing Behaviors in Origami-Based and Developable Mechanisms , Jared J. Butler

Page 1 of 9

Advanced Search

  • Notify me via email or RSS

ScholarsArchive ISSN: 2572-4479

  • Collections
  • Disciplines
  • Scholarly Communication
  • Additional Collections
  • Academic Research Blog

Author Corner

Hosted by the.

  • Harold B. Lee Library

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

MechE Undergrad

Search form, sb thesis information.

Covid-19 Related Updates from MIT Libraries: https://libraries.mit.edu/distinctive-collections/thesis-specs/#bachelors

Important Thesis Forms, Dates, and Guidelines -- Updated with electronic submission instructions

Thesis Forms

  • Fillable Thesis Proposal Form (no instructions)
  • Thesis Preparation Guidelines
  • Example Title and cover pages - PDF  
  • Example Table of Contents and List of Figures - PDF   
  • Students can use this  Overleaf Template . Please contact  [email protected]  with any questions about the template.
  • Fall 2023: Friday, October 6
  • Spring 2024: Friday, March 8
  • *It is HIGHLY RECOMMENDED that students find a thesis project and supervisor prior to Spring term of Senior year.

Add Thesis units (2.ThU) to your Registration. 

Submit your final draft of your thesis to your thesis supervisor.

Note: You must leave time for your thesis supervisor to review and for you to make revisions before submitting the final thesis to the UG Office! Recommended Dates to submit to your supervisor - (January 2024 Due Date) Week of January 8th; (May 2024 Due Date) Week of April 29th

  • Submit final thesis : Submit 1 digital copy (title page unsigned)  via email to Christina Spinelli, [email protected] .
  • February 2024 Degree List: Friday, January 19th at 5 PM EST
  • June 2024 Degree List: Friday, May 10th at 5 PM EST

Patents and Thesis Holds

You must go through the TLO or DUE in order to get a thesis hold.

  • If you share ownership of the patent with MIT, then complete a Technology Licensing Office (TLO) disclosure form. For more information: http://web.mit.edu/tlo/www/community/students.html
  • If you requesting that MIT waive the right to your patent (the form for this is also on the link above), you can request a thesis hold from the Dean of Undergraduate Education. A request for a thesis hold must be made jointly by the student and advisor, using the DUE Thesis Hold Request Form, which you can download from the DUE website. For more information: http://due.mit.edu/faqs/frequently-asked-questions#Thesis_Hold

General Information

The SB in Mechanical Engineering requires a thesis with a minimum of 6 units credit. The objective of this requirement is to give students an opportunity to learn about a topic in depth through independent study under the guidance of an advisor who is knowledgeable in the field.

The nature of the work may be the review of an engineering topic of interest to the student, an original research project, or a design project. In any case, the work must involve additional learning of a substantive nature. The work must be documented by a thesis document graded by the advisor. With the approval of the advisor, up to 15 units of credit are permitted.

Finding a Thesis Supervisor

Students have the responsibility to find their own thesis supervisor, and it is best that this be done by the beginning of the senior year. Your thesis supervisor should be an MIT faculty member (not necessarily MechE), or an approved MechE lab instructor or researcher. Many students develop theses from UROP projects that they have had during the junior year or summer between junior and senior years. In that case, the UROP supervisor becomes the thesis supervisor. In other cases, students will contact faculty members whose research is of interest to them, and a thesis project can be developed by discussion between the student and the faculty member. In still other cases, students may have their own clear idea of the subject of their thesis, and the task will be to find a faculty member who is interested in working with the student on that topic.

The thesis advisor of record must be an MIT faculty member or select members of the research staff (graduate students and postdocs are ineligible to act as thesis advisors). Students who are looking for an appropriate thesis advisor should consult the Undergraduate Office (Room 1-110). Theses may be done off campus, but students are cautioned that off-campus supervisors usually are not familiar with the thesis requirements which may put the student at risk when seeking approval of the Department. Also, work done at an industrial firm may be considered proprietary by the firm which would prevent the student from submitting the thesis to the Department. In such cases, a representative of the firm must sign a release letter, a sample text of which is available at the MechE Undergraduate Office.

You can search MechE faculty by topic areas. 

Thesis Registration and Grading

Students may elect to start and/or finish the work in the Fall Term, the Spring Term, or IAP, and they may choose to extend the work over several terms. In the latter case, a progress report is required for each term of registration. If the work in progress is judged satisfactory by the advisor, a grade of "J" will be awarded. Unsatisfactory progress will be awarded the grade "U". Students must be registered for subject 2.ThU for the term in which the thesis is submitted.

Before registering for thesis, students must complete the thesis proposal form and attach a brief paragraph summarizing the work planned. (The form is available on the "download forms" page in this web site.) The form must be signed by the thesis advisor and returned to the MechE Undergraduate Office (Room 1-110). In the event of a change of advisor or project, the proposal must be updated in the Undergraduate Office as soon as possible. Students who submit the completed forms on or before Registration Day may register for 2.ThU on the Registration Form for the number of units agreed upon with the thesis advisor. Students who complete the thesis proposal after Registration Day, but before the Add Date, must add 2.ThU by submitting to the Registrar a completed Add/Drop Form signed by both the thesis supervisor and the student's faculty advisor. Drop date is the absolute deadline for adding or dropping 2.ThU. Students may not register for the thesis after the drop date.

At mid-term, the thesis advisor will be asked for an assessment of the student's progress on the thesis. Thus, it is important for the student to maintain contact with the advisor so that an accurate assessment can be made. If the thesis advisor judges progress to be unsatisfactory, a grade of "U" will be submitted and the number of units for 2.ThU registration will be reduced to 1. The grade of "U" will remain on the transcript and the Course 2 degree requirements cannot be completed until another thesis is started and completed with a passing grade. Students who are making satisfactory progress but fail to complete the thesis by the Thesis Due Date will receive the grade "J" indicating that at least one additional unit of registration for 2.ThU will be required to complete the Course 2 degree. Upon satisfactory completion of the thesis, the thesis advisor will assign a grade which will apply to all units of 2.ThU registration from previous terms, up to an absolute limit of 15. For thesis credit during IAP, students should register during the first week of IAP in the Undergraduate Office.

During the semester in which the student expects to graduate , it is the responsibility of the student to maintain contact with the thesis advisor. In the event that thesis progress is reported as unsatisfactory, the student's name will be removed from the Degree List. Students are reminded that graduation also can be delayed by late submission of an acceptable thesis or by submission of a thesis that fails to conform to the current Thesis Specifications. Theses may not be submitted after 5:00 PM on the Thesis Due Date.

Consult the MIT Academic Calendar for Add Date, Drop Date, and Thesis Due Dates for the semester in question .

Thesis Submission

Be sure to submit a draft version of your thesis to your thesis supervisor well before the thesis due date. Your thesis supervisor may have edits for you to incorporate into your final thesis. One copy of the final thesis must be submitted to the Undergraduate Office in 1-110.

1. Be sure that the thesis meets the library’s published thesis specifications, published online here

2. Pay special attention to the title page and abstract page – examples are provided online.

  • Sample title page
  • The date on the Title Page MUST BE one of the following (this reflects the date of your degree, not the date of your thesis submission): September 2023, February 2024 or May 2024
  • The Signature block should contain the following:

Signature of Author:

Department of Mechanical Engineering[Date of thesis submission]

Certified by:[Your thesis advisor’s name]

[Thesis advisor’s title]

Thesis Supervisor Accepted by: Kenneth Kamrin

Associate Professor of Mechanical Engineering

Undergraduate Officer

  • Sample abstract
  • The date on the Abstract Page reflects your thesis submission date

         Latex templates

  • The thesis specs website says: If you are writing your thesis on Athena, follow the formatting and typeface instructions under the LATEX or FRAME olc stock answer topics by typing the command "olc_answers" on any Athena workstation.

General Thesis Writing Information

For formatting guidelines, please see the Thesis Specifications . This website has information relating to required pages (title and abstract), as well as suggestions for fonts and formatting figures/graphics. Note: One copy of the thesis must be submitted to the Undergraduate Office in 1-110. (The thesis specs state that 2 copies must be submitted, but that only applies to a graduate student thesis).

The usual structure of a thesis is:

  • Abstract Page
  • Acknowledgements (optional)
  • Table of Contents (optional)
  • Introduction
  • Content, in chapters for a long thesis
  • Bibliography/References
  • Appendices (optional)

The content of the thesis is to be determined by the student and faculty supervisor. Your thesis will be letter graded.

The WCC at MIT (Writing and Communication Center) offers free one-on-one professional advice from lecturers (who all have advanced degrees and who are all are published writers) about all types of academic, creative, and professional writing and about all aspects of oral presentations (including practicing your presentations). We help you think your way more deeply into your topic, no matter what department or discipline you are in. The WCC is located in E18-233). To register with our online scheduler and to make appointments, go to https://mit.mywconline.com/ . To access the WCC’s many pages of advice about writing and oral presentations, go to http://cmsw.mit.edu/writing-and-communication-center/ . The Center’s core hours are Monday-Friday, 9:00 a.m.-6:00 p.m.; evening hours vary by semester–check the online scheduler for up-to-date hours.

Thesis, Research and Practice

Physical systems modeling and design using machine learning.

  • Read more about Physical Systems Modeling and Design Using Machine Learning

UKnowledge

UKnowledge > College of Engineering > Mechanical Engineering > Theses & Dissertations

Theses and Dissertations--Mechanical Engineering

Theses/dissertations from 2024 2024.

The Determination of Darcy Permeabilities and Slip Parameters in Porous Thermal Protection Media via Pressure-Driven Steady Flows at Varying Levels of Thermal Decomposition , John Ryan O'Nan

Theses/Dissertations from 2023 2023

Utilization of Uncrewed Aircraft Systems Towards Investigating the Structure of the Atmospheric Surface Layer , Loiy Al-Ghussain

MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN , Alireza Babaei

Impact of spallation and internal radiation on fibrous ablative materials , Raghava Sai Chaitanya Davuluri

ANISOTROPIC MATERIAL BEHAVIOR OF 3D PRINTED FIBER COMPOSITES , Jordan Garcia

Stratospheric Glider Measurements of Atmospheric Parameters , Anisa Haghighi

Attrition Study of Copper-Supplemented Iron-Based Oxygen Carrier for Chemical Looping Combustion , Neng Huang

MACHINE LEARNING FOR ADVANCING AUTOMATION AND QUALITY CONTROL IN ROBOTIC WELDING , Joseph Kershaw

A computational fluid dynamic analysis of oxyacetylene combustion flow for use in material response boundary conditions , Craig Meade

MULTISCALE MODELING OF CARDIAC GROWTH AND BAROREFLEX CONTROL , Hossein Sharifi

Precision Meteorological Prediction Employing A Data-Driven, Adaptive, Real-Time (DART) Approach , Sujit Sinha

Parallel Real Time RRT*: An RRT* Based Path Planning Process , David Yackzan

Theses/Dissertations from 2022 2022

IN-SITU CHARACTERIZATION OF SURFACE QUALITY IN γ-TiAl AEROSPACE ALLOY MACHINING , David Adeniji

NUMERICAL AND SCALING STUDY ON APPLICATION OF INKJET TECHNOLOGY TO AUTOMOTIVE COATING , Masoud Arabghahestani Dr.

EXPERIMENTAL INVESTIGATION OF ROUGHNESS AND BLOWING EFFECTS OVER ABLATOR-LIKE SURFACES , Colby Borchetta

Energy and Economic Modeling of Stillage Dewatering Processes in Kentucky Bourbon Distilleries , William Brennan

Peridynamic Material Correspondence Models: Bond-Associated and Higher-Order Formulations , WaiLam Chan

A Decoupled Engineering Methodology for Accurate Prediction of Ablative Surface Boundary Conditions in Thermal Protection Systems , Justin Cooper

QUANTITATIVE METHODS FOR TOTAL LIFECYCLE RISK LIKELIHOOD AND IMPACT ASSESSMENT IN SUSTAINABLE PRODUCT DESIGN DECISION MAKING , Christian Enyoghasi

Numerical Investigation of an Oxyacetylene Torch With Regards to an Ablative Material , Luke Fortner

Formation Control with Collision Avoidance for Fixed-Wing Unmanned Air Vehicles With Speed Constraints , Christopher Heintz

Radiative Conductivity Estimation Using Direct Approach For Fibrous Materials , Mohammad Khaleel

Modeling Human Control Behavior in Command-following Tasks , Sajad Koushkbaghi

Formation Control with Bounded Controls and Collision Avoidance: Theory and Application to Quadrotor Unmanned Air Vehicles , Zachary S. Lippay

Small-Satellite Attitude Control Using Sinusoidal Actuator Motion: Experiments on the International Space Station , K. Ryan Lush

Page 1 of 14

Advanced Search

  • Notify me via email or RSS

Browse by Author

  • Collections
  • Disciplines

Author Corner

  • Submit Research

New Title Here

Below. --> connect.

  • Law Library
  • Special Collections
  • Copyright Resource Center
  • Graduate School
  • Scholars@UK

Logo of Kentucky Research Commons

  • We’d like your feedback

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

University of Kentucky ®

An Equal Opportunity University Accreditation Directory Email Privacy Policy Accessibility Disclosures

Main navigation

  • Undergraduate Studies
  • Graduate Studies
  • Links & Services
  • Prospective Students and Admissions
  • Mechanical Engineering CEGEP Curricula
  • Mechanical Engineering Out of Province Curricula
  • Honours Mechanical Engineering Curricula
  • Complementary Studies
  • Complementary Technical Courses
  • Design Concentration
  • Aeronautical Concentration
  • Undergraduate Labs
  • Thesis Projects
  • Design Projects
  • Minors in Engineering
  • Courses Offered
  • Advising and Contact Information

Thesis Projects (last update November 24, 2023)

The Honours Thesis research projects listed below are available only to McGill Mechanical Engineering Undergraduate students in the Honours program and registered for MECH 403-404 courses .

If you are interested in one of the thesis projects, please send an expression of interest to the contact email provided. Although we do our best to keep this list up-to-date, some projects may no longer be available.

If you are a professor who would like to add or remove a thesis project, please complete the honours project posting form . 

Projects for Winter 2024 and Fall 2024:

Thesis project 2023-1.

Title: Development of a method for recycling fibreglass composite wind turbines Supervisor : Prof. Larry Lessard The term(s) to begin:  Fall 2023 or Winter 2024 Brief description: There is growing concern about recycling of end-of-life composite materials. Waste fiber and other materials cannot be put into landfills so recycling methods must be developed. Used wind turbine blades can be recycled to recover the fibers and these fibers can be re-used to make materials for 3D printing. So this project aims to solve two simultaneous problems: that of growing amounts of waste and the need for stronger/more high tech materials for the growing 3D printing industry. The project involves experimental manufacturing based on composite materials theory. Contact e-mail : larry.lessard [at] mcgill.ca

Updated: May 2, 2023

Thesis Project 2023-2

Title: Multi-robot collaborative state estimation Supervisor : Prof. James Richard Forbes The term(s) to begin : Fall 2023, Winter 2024 Brief description : Autonomous vehicles, such as autonomous cars, trucks, and trains, must fuse various forms of sensor data together in order to ascertain their position, attitude, velocity, and angular velocity. Typical sensor data includes inertial measurement unit (IMU) data and some sort of position data, such as GPS data, or range data, such as optical camera, radar, or LIDAR data. In multi-robot systems, an individual robot can also utilize information from its neighbors by having the robots communicate their state estimates. However, the estimates of different robots are often correlated, and without properly modelling these cross-correlations, the performance of the estimator might be very poor. This project will then focus on modelling those cross-correlations for collaborative state estimation in multi-robot systems. The main task will involve the development and coding of a sigma point Kalman filter to enable multi-robot navigation; however, based on the student’s interests and background, alternatives to the sigma point Kalman filter could be considered. Students best fit for this project are those interested in using mathematical tools, such as linear algebra, numerical methods, probability theory, and numerical optimization, to solve problems found in robotics. Experience with Matlab and/or C programming is desired. Contact e-mail : james.richard.forbes [at] mcgill.ca

Thesis Project 2023-3

Title:  Robot navigation Supervisor : Prof. James Richard Forbes The term(s) to begin : Fall 2023, Winter 2024 Brief description :  Autonomous vehicles, such as autonomous cars, trucks, and trains, must fuse various forms of sensor data together in order to ascertain their position, attitude, velocity, and angular velocity. Typical sensor data includes inertial measurement unit (IMU) data and some sort of position data, such as GPS data, or range data, such as optical camera, radar, or LIDAR data. This project will focus on sensor fusion for robot navigation. The first task will be the development and coding of a matrix Lie group integrator, in the spirit of a Runge-Kutta integrator, but tailor to matrix Lie groups. The second task will be the development and coding of a cascaded sigma point Kalman filter to enable multi-agent navigation (i.e., navigation of many robots). Students best fit for this project are those interested in using mathematical tools, such as linear algebra, numerical methods, probability theory, and numerical optimization, to solve problems found in robotics. Experience with python and/or C++ programming is desired. Contact e-mail : james.richard.forbes [at] mcgill.ca

Posted: May 2, 2023

Thesis Project 2023-4

Title : Reconfigurable metamaterials for soft robotics Supervisor : Prof. Damiano Pasini The term(s) to begin : Fall 2023, Winter 2024 Brief description: Mechanical metamaterials are manmade materials, usually fashioned from repeating units, which are engineered to achieve extreme mechanical properties, often beyond those found in most natural materials. In this project, the student will use the lens of mechanics of materials to generate material concepts for soft robotics. Additive manufacturing techniques will be employed to fabricate prototypes and their performance will be examined through mechanical testing. Contact e-mail : damiano.pasini [at] mcgill.ca

Updated: May 9, 2023

Thesis Project 2023-5

Title : Nonlinear dynamics/vibrations of architected materials for aerospace applications Supervisor : Prof. Damiano Pasini and Prof. Mathias Legrand The term(s) to begin : Fall 2023, Winter 2024 Brief description: When launched in space, satellites need to endure an explosive upright boost that generates extremely large vibrations throughout their bodies. If uncontrolled, these vibrations end up spoiling the performance of their components with the risk of making them nonfunctional. In this project we study the nonlinear vibrations of a satellite component made of ultralight weight architected materials of unprecedented performance. The goal is to model its dynamic behaviour and understand the geometric factors that control its highly nonlinear response at the onset of a launch in space. The work involves a combination of theoretical and computational analysis. Contact e-mail : damiano.pasini [at] mcgill.ca

Thesis Project 2023-6

Title: Can you hear the shape of a robot? Supervisor : Prof. Audrey Sedal The term(s) to begin : Fall 2023, Winter 2024 Brief description : Unlike traditional robots, soft robots can take a variety of unusual 3D shapes. However, it is challenging to estimate the shape of a soft robot while it operates, which makes precise control difficult. Inspired by Mark Kac’s question, “Can one hear the shape of a drum?” Short answer: not all the time, due to the existence of isospectral manifolds. This project investigates fusion of acoustic sensing with other modes (e.g., cameras) to estimate the 3D shape of soft robots as they operate. You will build a variety of soft robot prototypes, develop sensing frameworks, and evaluate their performance. This project will involve fabrication, hardware development, programming, and a little bit of geometry.

mechanical engineering bachelor thesis

Contact e-mail : audrey.sedal [at] mcgill.ca

Updated: May 22, 2023

Thesis Project 2023-7

Title : Development of a Digital Twin of a Mill Yard Supervisor : Prof. Inna Sharf The term(s) to begin : Winter 2024, Fall 2024 Brief description: Digital twin is an emerging technology that goes hand in hand with increasing automation of machines,processes and advances in IofT. Professor Sharf’s industrial collaborator, FPInnovations, is working on increasing autonomy and intelligence of log loading machines and transport vehicles operating in the mill yards. This will ultimately be followed by moving the operators from the seats in the machines into an office, i.e., where they can no longer directly observe their environment. Furthermore, other processes,  such as, measuring the size of piles, are already executed remotely, for example, with drones, and will soon be executed autonomously, thus producing information on the state of assets in the mill yard. Ultimately, it will be important to have a digital twin of the mill yard, which will provide digital and visual information on the state of the mill yard, in particular, location and size of log piles, the location and status of machines operating in it, incoming and outgoing log trucks, the status (e.g., traversability) of roads and other information. Professor Sharf is interested in beginning the development of such a digital twin. This will require identifying a suitable platform to house the twin, laying out the roadmap for building the twin in a sequence of phases sand developing the phase 0 of the digital twin. Contact e-mail : inna.sharf [at] mcgill.ca

Updated: November 23, 2023

Projects for 2018-2019 school year: may or may not be still available - you may use contact e-mails to find out.

Thesis project 2018-11.

Title:  Dynamics of photon-driven lightsails for interstellar flight Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : The use of lasers to propel sails via direct photon pressure has the potential to achieve very high velocity spaceflight, greatly exceeding traditional chemical and electric propulsion sources, and enables the serious consideration of interstellar flight.  However, the dynamics and stability of thin sails (lightsails) under intense laser illumination is an outstanding problem.  This project will examine the dynamics of very thin membranes both theoretically and experimentally.  The response of a lightsail to perturbation will be analyzed both analytically and via computer simulation. Use of gasdynamic loading techniques (shock tube) will enable the same driving load to be applied in the laboratory, but without the use of megawatt-class lasers.  Experimental diagnostic techniques (photonic doppler velocimetry, 3-D digital image correlation) will be developed to study the lightsail dynamics that will eventually be applied to a laser-driven sail proof-of-concept facility. Personnel sought:  Student should have a strong interest in advanced space exploration concepts, with general background in physical optics, numerical simulation, and experimental techniques. Skills involved:  Experience with photography and high-speed data acquisition would be helpful.  Completion of Mech 321 (Mechanics of Deformable Solids) and Mech 430 (Fluids 2) is required for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Posted: September 12, 2018

Thesis Project 2018-12

Title:  Dynamic soaring on a shock wave Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : Dynamic soaring is a technique exploited by birds and sailplanes to increase their flight speed by exploiting differences in airspeed of different masses of air.  This project will explore this approach by examining dynamic soaring of a hypersonic glider on a shock wave.  In essence, the technique consists of “bouncing” back and forth from either side of a shock wave via a high lift-to-drag turn, increasing the net velocity of the glider.  The ability to “surf” on a very strong blast wave (such as resulting from a thermonuclear blast or asteroid impact) from ground all the way to space will be explored. The use of the technique on shock waves that occur in interplanetary space (coronal mass ejections, etc.) that might enable spacecraft to be accelerated to very high velocities “for free” will also be explored. Personnel sought:  Student should have a strong interest in advanced space exploration concepts and flight dynamics, with general background in numerical simulation. Skills involved:  Completion of Mech 430 (Fluids 2) is required for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Thesis Project 2018-13

Title:  Rapid transit within the solar system via directed energy: laser thermal vs. laser electric propulsion Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : Directed energy in the form of a ground or space-based laser providing power to a spacecraft is a disruptive technology that could enable a number of rapid-transit missions in the solar system and interstellar precursor missions.  This project will compare two different approaches for a spacecraft to utilize beamed laser power:  (1) laser thermal propulsion, wherein a laser is focused into a chamber to heat propellant that is expanded through a nozzle and (2) laser electric propulsion, wherein a laser  directed onto a photovoltaic array generates electricity to power electric propulsion (ion engine, etc.).  These two concepts will be compared for a number of missions of interest, as defined by NASA:  (1) Earth orbit to Mars orbit in no more than 45 days and (2) Traversing a distance of 125 AU in no more than ten years. Personnel sought:  Student should have a strong interest in advanced space exploration concepts, with general background in physical optics and numerical simulation. Skills involved:  Prior exposure to spacecraft mission design (e.g., experience with ‎Kerbal Space Program, etc.) would be helpful.  Completion of Mech 430 (Fluids 2) and Mech 346 (Heat Transfer) is required for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Thesis Project 2018-14

Title:  Impact of dust grain on lightsails for interstellar flight Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : Laser-driven lightsails are a promising technique for interstellar flight, however, sails will experience impacts of dust grains in the interplanetary and interstellar medium.  The impact of a sub-micron grain can deposit as much as 1 J of energy into the sail when travelling at speeds necessary for interstellar flight.  This project will examine the subsequent dynamics of the sail and the damage incurred.  This problem will be modelled both analytically and numerically, and experiments will be performed in the lab with gas gun-launched particles onto candidate thin-film materials. Personnel sought:  Student should have a strong interest in advanced space exploration concepts, with general background in materials and stress/strain, numerical simulation, and experimental techniques. Skills involved:  Experience with ANSYS would be very enabling for the project. Experience with photography and high-speed data acquisition would be helpful.  Completion of Mech 321 (Mechanics of Deformable Solids) is required for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Thesis Project 2018-15

Title:  Percolation model for detonation in a system of discrete energy sources Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : Detonation waves propagating in combustible gas mixtures exhibit very complex dynamics, with transverse and longitudinal shock waves that sweep across the front.  This project will attempt to model this process by treating detonation as an ensemble of interacting blast waves.  Approximate, analytic solutions of blast waves will be used to treat the problem.  Results will be interpreted with the assistance of percolation theory, a branch of statistical physics.  Results will also be compared to reactive Euler simulations using supercomputing resources. Skills required:  Strong coding skills (language of your choice) and awareness in advanced mathematics is of interest. Personnel sought:  Completion of Mech 430 (Fluids 2) is required for this project. Interest in nonlinear physics and pattern formation in nature would provide helpful motivation for this project. Exposure to concepts in statistical physics (Ad. Thermo) is also desirable. Contact e-mail : andrew.higgins [at] mcgill.ca

Thesis Project 2018-16

Title:  Pellet stream propulsion for interstellar flight Supervisor : Prof. Andrew Higgins The term(s) to begin :Fall 2018, Winter 2019, Fall 2019 Brief description : A promising approach to deep space propulsion that may enable interstellar flight is pellet stream propulsion, wherein high velocity pellets (with velocity exceeding that of the spacecraft) are used to impart momentum onto a spacecraft.  Such a pellet stream may be able to be collimated and focused over much greater distances than a laser beam, making it an attractive alternative to laser-driven directed energy.  This project will examine the ability of a charged particle to be steered and re-directed via a static magnetic field (e.g., quadrupole beam steering, etc.), both via computer simulation and experimental testing in the lab.  The ability to steer a small (mm to cm scale) pellet via magnetic field of rare earth magnets at speeds of ~1 km/s would be a significant validation of the concept. Personnel sought:  Student should have a strong interest in advanced space exploration concepts, with strong background in electromagnetism and physics. Interest in or familiarity with conventional, fundamental particle accelerators would be desirable. Skills involved:  Basic coding skills (language of your choice) and numerical simulation is required. Experience with basic electronics and microcontrollers (Arduino, etc.) and 3-D printing would be very helpful for the project. Contact e-mail : andrew.higgins [at] mcgill.ca

Department and University Information

Department of mechanical engineering.

  • Prospective Information & Curricula
  • Program Information and Curricula
  • Academic Advising Appointment
  • Courses offered
  • Faculty of Engineering
  • Computer Store
  • Program Information
  • Financial Information
  • Funding opportunities
  • Graduate Student Handbook
  • Graduate Supervisor
  • Research Areas
  • Career Planning Service
  • Counselling Services
  • Engineering career Centre
  • Harassment, Sexual Harassment and Discrimination
  • International Student Services
  • McGill Engineering Student Centre
  • McGill Engineering Undergraduate Society
  • McGill in Mind
  • Ombudsperson
  • Psychiatric Services
  • Service Point
  • Student Accounts
  • Student Aid
  • Student Health Services
  • Student Housing
  • Student Services
  • How it works

researchprospect post subheader

Useful Links

How much will your dissertation cost?

Have an expert academic write your dissertation paper!

Dissertation Services

Dissertation Services

Get unlimited topic ideas and a dissertation plan for just £45.00

Order topics and plan

Order topics and plan

Get 1 free topic in your area of study with aim and justification

Yes I want the free topic

Yes I want the free topic

The Best Mechanical Engineering Dissertation Topics and Titles

Published by Carmen Troy at January 5th, 2023 , Revised On May 17, 2024

Introduction 

Engineering is a vast subject that encompasses different branches for a student to choose from. Mechanical engineering is one of these branches , and one thing that trips students in the practical field is dissertation . Writing a mechanical engineering dissertation from scratch is a difficult task due to the complexities involved, but the job is still not impossible.

To write an excellent dissertation, you first need a stellar research topic. Are you looking to select the best mechanical engineering dissertation topic for your dissertation? To help you get started with brainstorming for mechanical engineering dissertation topics, we have developed a list of the latest topics that can be used for writing your mechanical engineering dissertation.

These topics have been developed by PhD-qualified writers on our team, so you can trust them to use these topics for drafting your own dissertation.

You may also want to start your dissertation by requesting a brief research proposal from our writers on any of these topics, which includes an introduction to the topic, research question, aim and objectives, literature review, and the proposed methodology of research to be conducted. Let us know  if you need any help in getting started.

Check our  dissertation example to get an idea of  how to structure your dissertation .

Review the step-by-step guide on how to write your own dissertation here.

Latest Mechanical Engineering Research Topics

Topic 1: an investigation into the applications of iot in autonomous and connected vehicles.

Research Aim: The research aims to investigate the applications of IoT in autonomous and connected vehicles

Objectives:

  • To analyse the applications of IoT in mechanical engineering
  • To evaluate the communication technologies in autonomous and connected vehicles.
  • To investigate how IoT facilitates the interaction of smart devices in autonomous and connected vehicles

Topic 2: Evaluation of the impact of combustion of alternative liquid fuels on the internal combustion engines of automobiles

Research Aim: The research aims to evaluate the impact of the combustion of alternative liquid fuels on the internal combustion engines of automobiles

  • To analyse the types of alternative liquid fuels for vehicles and their implications
  • To investigate the benchmarking of alternative liquid fuels based on the principles of combustion performance.
  • To evaluate the impact of combustion of alternative liquid fuels on the internal combustion engines of automobiles with conventional engines

Topic 3: An evaluation of the design and control effectiveness of production engineering on rapid prototyping and intelligent manufacturing

Research Aim: The research aims to evaluate the design and control effectiveness of production engineering on rapid prototyping and intelligent manufacturing

  • To analyse the principles of design and control effectiveness of production engineering.
  • To determine the principles of rapid prototyping and intelligent manufacturing for ensuring quality and performance effectiveness
  • To evaluate the impact of production engineering on the design and control effectiveness of rapid prototyping and intelligent manufacturing.

Topic 4: Investigating the impact of industrial quality control on the quality, reliability and maintenance in industrial manufacturing

Research Aim: The research aims to investigate the impact of industrial quality control on the quality, reliability and maintenance in industrial manufacturing

  • To analyse the concept and international standards associated with industrial quality control.
  • To determine the strategies for maintaining quality, reliability and maintenance in manufacturing.
  • To investigate the impact of industrial quality control on the quality, reliability and maintenance in industrial manufacturing.

Topic 5: Analysis of the impact of AI on intelligent control and precision of mechanical manufacturing

Research Aim: The research aims to analyse the impact of AI on intelligent control and precision of mechanical manufacturing

  • To analyse the applications of AI in mechanical manufacturing
  • To evaluate the methods of intelligent control and precision of the manufacturing
  • To investigate the impact of AI on intelligent control and precision of mechanical manufacturing for ensuring quality and reliability

COVID-19 Mechanical Engineering Research Topics

Investigate the impacts of coronavirus on mechanical engineering and mechanical engineers..

Research Aim: This research will focus on identifying the impacts of Coronavirus on mechanical engineering and mechanical engineers, along with its possible solutions.

Research to study the contribution of mechanical engineers to combat a COVID-19 pandemic

Research Aim: This study will identify the contributions of mechanical engineers to combat the COVID-19 pandemic highlighting the challenges faced by them and their outcomes. How far did their contributions help combat the Coronavirus pandemic?

Research to know about the transformation of industries after the pandemic.

Research Aim: The study aims to investigate the transformation of industries after the pandemic. The study will answer questions such as, how manufacturing industries will transform after COVID-19. Discuss the advantages and disadvantages.

Damage caused by Coronavirus to supply chain of manufacturing industries

Research Aim: The focus of the study will be on identifying the damage caused to the supply chain of manufacturing industries due to the COVID-19 pandemic. What measures are taken to recover the loss and to ensure the continuity of business?

Research to identify the contribution of mechanical engineers in running the business through remote working.

Research Aim: This study will identify whether remote working is an effective way to recover the loss caused by the COVID-19 pandemic? What are its advantages and disadvantages? What steps should be taken to overcome the challenges faced by remote workers?

Dissertation Topics in Mechanical Engineering Design and Systems Optimization

Topic 1: mini powdered metal design and fabrication for mini development of waste aluminium cannes and fabrication.

Research Aim: The research will focus on producing and manufacturing copula furnaces and aluminium atomisers with available materials to manufacture aluminium powder metal.0.4 kg of refined coke will be chosen to measure content and energy balance and calculate the design values used to produce the drawings.

Topic 2: Interaction between the Fluid, Acoustic, and vibrations

Research Aim: This research aims to focus on the interaction between the Fluid, Acoustic, and vibrations

Topic 3: Combustion and Energy Systems.

Research Aim: This research aims to identify the relationship between Combustion and Energy Systems

Topic 4: Study on the Design and Manufacturing

Research Aim: This research will focus on the importance of design and manufacturing

Topic 5: Revolution in the Design Engineering

Research Aim: This research aims to highlight the advances in design engineering

Topic 6: Optimising HVAC Systems for Energy Efficiency

Research Aim: The study investigates different design configurations and operational strategies to optimise heating, ventilation, and air conditioning (HVAC) systems for energy efficiency while maintaining indoor comfort levels.

Topic 7: Impact of Building Design Parameters on Indoor Thermal Comfort

Research Aim: The research explores the impact of building design parameters, such as insulation, glazing, shading, and ventilation, on indoor thermal comfort and energy consumption.

Topic 8: An Empirical Analysis of Enhanced Security and Privacy Measures for Call Taxi Metres

Research Aim: The research explores the methods to enhance the security and privacy of call taxi meter systems. It explores encryption techniques for sensitive data transmission and authentication protocols for driver and passenger verification.

Topic 9: An Investigation of Optimising Manifold Design

Research Aim: The study investigates various designs for manifolds used in HBr/HCl charging systems. It focuses on factors such as material compatibility, pressure control, flow rates, and safety protocols. 

Topic 10: Implementation of a Plant Lean Transformation

Research Aim: The research examines the implementation process and outcomes of a Lean Transformation in a plant environment. It focuses on identifying the key factors contributing to successful adoption and sustained improvement in operational efficiency. 

Topic 11: Exploring Finite Element Analysis (FEA) of Torque Limiters

Research Aim: Exploring the use of FEA techniques to simulate the behaviour of torque limiters under various loading conditions. The research provides insights into stress distribution and deformation.

Dissertation Topics in Mechanical Engineering Innovations and Materials Analysis

Topic 1: an overview of the different research trends in the field of mechanical engineering..

Research Aim: This research aims to analyse the main topics of mechanical engineering explored by other researchers in the last decade and the research methods. The data used is accumulated from 2009 to 2019. The data used for this research is used from the “Applied Mechanics Review” magazine.

Topic 2: The Engineering Applications of Mechanical Metamaterials.

Research Aim: This research aims to analyse the different properties of various mechanical metamaterials and how they can be used in mechanical engineering. This research will also discuss the potential uses of these materials in other industries and future developments in this field.

Topic 3: The Mechanical Behaviour of Materials.

Research Aim: This research will look into the properties of selected materials for the formation of a product. The study will take the results of tests that have already been carried out on the materials. The materials will be categorised into two classes from the already prepared results, namely destructive and non-destructive. The further uses of the non-destructive materials will be discussed briefly.

Topic 4: Evaluating and Assessment of the Flammable and Mechanical Properties of Magnesium Oxide as a Material for SLS Process.

Research Aim: The research will evaluate the different properties of magnesium oxide (MgO) and its potential use as a raw material for the SLS (Selective Laser Sintering) process. The flammability and other mechanical properties will be analysed.

Topic 5: Analysing the Mechanical Characteristics of 3-D Printed Composites.

Research Aim: This research will study the various materials used in 3-D printing and their composition. This research will discuss the properties of different printing materials and compare the harms and benefits of using each material.

Topic 6: Evaluation of a Master Cylinder and Its Use.

Research Aim: This research will take an in-depth analysis of a master cylinder. The material used to create the cylinder, along with its properties, will be discussed. The use of the master cylinder in mechanical engineering will also be explained.

Topic 7: Manufacturing Pearlitic Rail Steel After Re-Modelling Its Mechanical Properties.

Research Aim: This research will look into the use of modified Pearlitic rail steel in railway transportation. Modifications of tensile strength, the supported weight, and impact toughness will be analysed. Results of previously applied tests will be used.

How Can ResearchProspect Help?

ResearchProspect writers can send several custom topic ideas to your email address. Once you have chosen a topic that suits your needs and interests, you can order for our dissertation outline service , which will include a brief introduction to the topic, research questions , literature review , methodology , expected results , and conclusion . The dissertation outline will enable you to review the quality of our work before placing the order for our full dissertation writing service !

Electro-Mechanical Dissertation Topics

Topic 8: studying the electro-mechanical properties of multi-functional glass fibre/epoxy reinforced composites..

Research Aim: This research will study the properties of epoxy-reinforced glass fibres and their use in modern times. Features such as tensile strength and tensile resistance will be analysed using Topic 13: Studying the Mechanical and Durability different current strengths. Results from previous tests will be used to explain their properties.

Topic 9: Comparing The Elastic Modules of Different Materials at Different Strain Rates and Temperatures.

Research Aim: This research will compare and contrast a selected group of materials and look into their elastic modules. The modules used are the results taken from previously carried out experiments. This will explain why a particular material is used for a specific purpose.

Topic 10: Analysing The Change in The Porosity and Mechanical Properties of Concrete When Mixed With Coconut Sawdust.

Research Aim: This research will analyse the properties of concrete that are altered when mixed with coconut sawdust. Porosity and other mechanical properties will be evaluated using the results of previous experiments. The use of this type of concrete in the construction industry will also be discussed.

Topic 11: Evaluation of The Thermal Resistance of Select Materials in Mechanical Contact at Sub-Ambient Temperatures.

Research Aim: In this research, a close evaluation of the difference in thermal resistance of certain materials when they come in contact with a surface at sub-ambient temperature. The properties of the materials at the temperature will be noted. Results from previously carried out experiments will be used. The use of these materials will be discussed and explained, as well.

Topic 12: Analysing The Mechanical Properties of a Composite Sandwich by Using The Bending Test.

Research Aim: In this research, we will analyse the mechanical properties of the components of a composite sandwich through the use of the bending test. The results of the tests previously carried out will be used. The research will take an in-depth evaluation of the mechanical properties of the sandwich and explain the means that it is used in modern industries.

Mechanical Properties Dissertation Topics

Topic 13: studying the mechanical and durability properties of magnesium silicate hydrate binders in concrete..

Research Aim: In this research, we will evaluate the difference in durability and mechanical properties between regular concrete binders and magnesium silicate hydrate binders. The difference between the properties of both binders will indicate which binder is better for concrete. Features such as tensile strength and weight it can support are compared.

Topic 14: The Use of Submersible Pumping Systems.

Research Aim: This research will aim to analyse the use of a submersible pumping system in machine systems. The materials used to make the system, as well as the mechanical properties it possesses, will be discussed.

Topic 15: The Function of a Breather Device for Internal Combustion Engines.

Research Aim: In this research, the primary function of a breather device for an internal combustion engine is discussed. The placement of this device in the system, along with its importance, is explained. The effects on the internal combustion engine if the breather device is removed will also be observed.

Topic 16: To Study The Compression and Tension Behaviour of Hollow Polyester Monofilaments.

Research Aim: This research will focus on the study of selected mechanical properties of hollow polyester monofilaments. In this case, the compression and tension behaviour of the filaments is studied. These properties are considered in order to explore the future use of these filaments in the textile industry and other related industries.

Topic 17: Evaluating the Mechanical Properties of Carbon-Nanotube-Reinforced Cementous Materials.

Research Aim: This research will focus on selecting the proper carbon nanotube type, which will be able to improve the mechanical properties of cementitious materials. Changes in the length, diameter, and weight-based concentration of the nanotubes will be noted when analysing the difference in the mechanical properties. One character of the nanotubes will be of optimal value while the other two will be altered. Results of previous experiments will be used.

Topic 18: To Evaluate the Process of Parallel Compression in LNG Plants Using a Positive Displacement Compressor

Research Aim: This research aims to evaluate a system and method in which the capacity and efficiency of the process of liquefaction of natural gas can avoid bottlenecking in its refrigerant compressing system. The Advantages of the parallel compression system in the oil and gas industry will be discussed.

Topic 19: Applying Particulate Palm Kernel Shell Reinforced Epoxy Composites for Automobiles.

Research Aim: In this research, the differences made in applying palm kernel shell particulate to reinforced epoxy composites for the manufacturing of automobile parts will be examined. Properties such as impact toughness, wear resistance, flexural, tensile, and water resistance will be analysed carefully. The results of the previous tests will be used. The potential use of this material will also be discussed.

Topic 20: Changes Observed in The Mechanical Properties of Kevlar KM2-600 Due to Abrasions.

Research Aim: This research will focus on observing the changes in the mechanical properties of Kevlar KM2-600 in comparison to two different types of S glass tows (AGY S2 and Owens Corning Shield Strand S). Surface damage, along with fibre breakage, will be noted in all three fibres. The effects of the abrasions on all three fibres will be emphasised. The use of Kevlar KM2 and the other S glass tows will also be discussed, along with other potential applications.

Order a Proposal

Worried about your dissertation proposal? Not sure where to start?

  • Choose any deadline
  • Plagiarism free
  • Unlimited free amendments
  • Free anti-plagiarism report
  • Completed to match exact requirements

Order a Proposal

Industrial Application of Mechanical Engineering Dissertation Topics

Topic 1: the function of a fuel injector device..

Research Aim: This research focuses on the function of a fuel injector device and why this component is necessary for the system of an internal combustion engine. The importance of this device will be explained. The adverse effects on the entire system if the equipment is either faulty or completely removed will also be discussed.

Topic 2: To Solve Optimization Problems in a Mechanical Design by The Principles of Uncertainty.

Research Aim: This research will aim to formulate an optimization in a mechanical design under the influence of uncertainty. This will create an efficient tool that is based on the conditions of each optimisation under the risk. This will save time and allow the designer to obtain new information in regard to the stability of the performance of his design under uncertainties.

Topic 3: Analysing The Applications of Recycled Polycarbonate Particle Materials and Their Mechanical Properties.

Research Aim: This research will evaluate the mechanical properties of different polycarbonate materials and their potential to be recycled. The materials that can be recycled are then further examined for potential use as 3-dimensional printing materials. The temperature of the printer’s nozzle, along with the nozzle velocity matrix from previous experiments, is used to evaluate the tensile strength of the printed material. Other potential uses of these materials are also discussed.

Topic 4: The Process of Locating a Lightning Strike on a Wind Turbine.

Research Aim: This research will provide a detailed explanation of the process of detecting a lightning strike on a wind turbine. The measurement of the magnitude of the lightning strike, along with recognising the affected area will be explained. The proper method employed to rectify the damage that occurred by the strike will also be discussed.

Topic 5: Importance of a Heat Recovery Component in an Internal Combustion Engine for an Exhaust Gas System.

Research Aim: The research will take an in-depth evaluation of the different mechanics of a heat recovery component in an exhaust gas system. The functions of the different parts of the heat recovery component will be explained along with the importance of the entire element itself. The adverse effect of a faulty defective heat recovery component will also be explained.

“Feel free to contact us if you require custom dissertation topics and titles for your dissertation. ResearchProspect Ltd is a UK registered academic writing company which can provide you with highly qualified writers to assist you in the process of the formation of your dissertation. For more information about the type of services we offer.“

Related: Civil Engineering Dissertation

Important Notes:

As a student of mechanical engineering looking to get good grades, it is essential to develop new ideas and experiment on existing mechanical engineering theories – i.e., to add value and interest to the topic of your research.

The field of mechanical engineering is vast and interrelated to so many other academic disciplines like  civil engineering ,  construction ,  law , and even  healthcare . That is why it is imperative to create a mechanical engineering dissertation topic that is particular, sound and actually solves a practical problem that may be rampant in the field.

We can’t stress how important it is to develop a logical research topic; it is the basis of your entire research. There are several significant downfalls to getting your topic wrong: your supervisor may not be interested in working on it, the topic has no academic creditability, the research may not make logical sense, and there is a possibility that the study is not viable.

This impacts your time and efforts in  writing your dissertation as you may end up in a cycle of rejection at the very initial stage of the dissertation. That is why we recommend reviewing existing research to develop a topic, taking advice from your supervisor, and even asking for help in this particular stage of your dissertation.

Keeping our advice in mind while developing a research topic will allow you to pick one of the best mechanical engineering dissertation topics that not only fulfill your requirement of writing a research paper but also add to the body of knowledge.

Therefore, it is recommended that when finalizing your dissertation topic, you read recently published literature in order to identify gaps in the research that you may help fill.

Remember- dissertation topics need to be unique, solve an identified problem, be logical, and can also be practically implemented. Take a look at some of our sample mechanical engineering dissertation topics to get an idea for your own dissertation.

How to Structure Your Mechanical Engineering Dissertation

A well-structured   dissertation can help students   to achieve a high overall academic grade.

  • A Title Page
  • Acknowledgments
  • Declaration
  • Abstract: A summary of the research completed
  • Table of Contents
  • Introduction : This chapter includes the project rationale, research background, key research aims and objectives, and the research problems to be addressed. An outline of the structure of a dissertation can also be added to this chapter.
  • Literature Review :  This chapter presents relevant theories and frameworks by analysing published and unpublished literature available on the chosen research topic in light of research questions to be addressed. The purpose is to highlight and discuss the relative weaknesses and strengths of the selected research area whilst identifying any research gaps. Break down of the topic and key terms can have a positive impact on your dissertation and your tutor.
  • Methodology: The  data collection  and  analysis methods and techniques employed by the researcher are presented in the Methodology chapter, which usually includes  research design, research philosophy, research limitations, code of conduct, ethical consideration, data collection methods, and  data analysis strategy .
  • Findings and Analysis: The findings of the research are analysed in detail under the Findings and Analysis chapter. All key findings/results are outlined in this chapter without interpreting the data or drawing any conclusions. It can be useful to include  graphs , charts, and   tables in this chapter to identify meaningful trends and relationships.
  • Discussion and  Conclusion: The researcher presents his interpretation of results in this chapter and states whether the research hypothesis has been verified or not. An essential aspect of this section of the paper is to draw a linkage between the results and evidence from the literature. Recommendations with regard to the implications of the findings and directions for the future may also be provided. Finally, a summary of the overall research, along with final judgments, opinions, and comments, must be included in the form of suggestions for improvement.
  • References:  This should be completed in accordance with your University’s requirements
  • Bibliography
  • Appendices: Any additional information, diagrams, graphs that were used to  complete the  dissertation  but not part of the dissertation should be included in the Appendices chapter. Essentially, the purpose is to expand the information/data.

About ResearchProspect Ltd

ResearchProspect is a  UK-based academic writing service that provides help with  Dissertation Proposal  Writing,  PhD proposal writing ,  Dissertation Writing ,  Dissertation Editing, and Improvement .

Our team of writers is highly qualified. They are experts in their respective fields. They have been working in the industry for a long, thus are aware of the issues as well as the trends of the industry they are working in.

Need more Topics.?

Free Dissertation Topic

Phone Number

Academic Level Select Academic Level Undergraduate Graduate PHD

Academic Subject

Area of Research

Review Our Best Dissertation Topics 2021 complete list.

Frequently Asked Questions

How to find dissertation topics about mechanical engineering.

To discover mechanical engineering dissertation topics:

  • Research recent advancements.
  • Explore industry challenges.
  • Consider sustainability or automation.
  • Review academic journals.
  • Consult with professors.
  • Opt for a niche aligning with your passion and career aims.

You May Also Like

Identifying and assessing risks in various life situations is the focus of risk management dissertation topics. The majority of them are natural, but there are also artificial ones. In addition to mitigating the effects of various types of risks

Students will undoubtedly experience anxiety when working on their dissertations on educational management. It is a fact that a topic like this necessitates in-depth study, and the paper.

Need interesting and manageable medicine and nursing dissertation topics or titles? Here are the trending medicine and nursing dissertation titles so you can choose the most suitable one.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Theses and Dissertations
  • Message from the Interim Chair
  • UH Calendar
  • Open Positions
  • Pathway Professor
  • Research Areas
  • Faculty Expertise
  • Laboratories & Facilities
  • Centers and Consortia
  • CTFM Seminars
  • Industrial Relations
  • Accreditation
  • Program Administration
  • Curriculum Flow Chart
  • Advising Information
  • Societies & Organizations
  • Capstone Design
  • Scholarships
  • Accelerated BS/MS
  • Degree Programs
  • Online Graduate Degrees
  • Non-Degree Certificate Programs
  • Graduate Courses
  • Degree Plans
  • Graduate Student Association
  • UH-Extend Online ME Graduate Programs
  • Online Programs at the Cullen College
  • Momentum Magazine

Edinburgh Research Archive

University of Edinburgh homecrest

  •   ERA Home
  • Engineering, School of

Engineering thesis and dissertation collection

mechanical engineering bachelor thesis

By Issue Date Authors Titles Subjects Publication Type Sponsor Supervisors

Search within this Collection:

Recent Submissions

Application of optical flow for high-resolution velocity measurements in wall-bounded turbulence , asset maintenance of thick section fibre-reinforced composite structures , neural networks for channel estimation , design of new chemical sensors based on controlled morphologies of gold nanoparticles , big data analysis on long-span bridge structural health monitoring systems , investigation of a low-energy thermal energy recovery system for passive ventilation applications , nanostructured composite adsorbents and membranes for selective dye, oil and heavy metal ion separation , data-driven aerodynamic instabilities detection in centrifugal compressors , guided direct time-of-flight lidar for self-driving vehicles , properties and tunable nature of electrochemically-grown peptide-based hydrogels at single microelectrodes , thermal integration of waste to energy plants with post-combustion co₂ capture technologies , development and modelling of sustainable polymer–based membranes for gas separation and packaging , holographic single photon lidar for adaptive 3d imaging , operational data mining for offshore wind farm maintenance , dynamics of rigid and soft particles in a cross-slot flow at finite inertia , using machine learning for long-term track bed behaviour analysis and maintenance scheduling optimisation , developing a multi-scale parallelised coupled system for wave-current interactions at regional scales , uav-aided hybrid rf-optical wireless networks , turbulence in real-sea conditions and its impacts on tidal energy devices , investigating the role of mechanical and structural properties of scaffolds for cartilage tissue engineering .

mechanical engineering bachelor thesis

  • Senior Thesis

For an A.B. degree, a research thesis is strongly encouraged but not required; a thesis is necessary to be considered for High or Highest Honors. Additionally, a thesis will be particularly useful for students interested in pursuing graduate engineering research. 

In the S.B. degree programs, every student completes a design thesis as part of the required senior capstone design course (ES 100hf). During the year-long course students design and prototype a solution to an engineering problem of their own choice.

The guide below provides an overview of the requirement for an A.B. thesis in Mechanical Engineering:

  • Engineering A.B. Thesis Guide

Some recent thesis examples across all of SEAS can be found on the Harvard DASH (Digital Access to Scholarship at Harvard) repository .

Mechanical Engineering Senior thesis examples:

  • Prototyped a mug to keep tea the perfect drinking temperature using a novel wax substrate for thermal control

Engineering A.B. Thesis Extensions and Late Submissions

Thesis extensions will only be granted in extraordinary circumstances, such as hospitalization or grave family emergency. An extension may only be granted by the DUS (who may consult with thesis advisor, resident dean, and readers). For joint concentrators, the other concentration should also support the extension. To request an extension, please email your ADUS or DUS, ideally several business days in advance. Please note that any extension must be able to fall within our normal grading, feedback, and degree recommendation deadline, so extensions of more than a few days are usually impossible.

Late submissions of thesis work will not be accepted. A thesis is required for joint concentrators, and a late submission will prevent a student from fulfilling this requirement. Please plan ahead and submit your thesis by the required deadline.

Senior Thesis Submission Information for A.B. Programs

Senior A.B. theses are submitted to SEAS and made accessible via the Harvard University Archives and optionally via  DASH  (Digital Access to Scholarship at Harvard), Harvard's open-access repository for scholarly work.

In addition to submitting to the department and thesis advisors & readers, each SEAS senior thesis writer will use an online submission system to submit an electronic copy of their senior thesis to SEAS; this electronic copy will be kept at SEAS as a non-circulating backup. Please note that the thesis won't be published until close to or after the degree date. During this submission process, the student will also have the option to make the electronic copy publicly available via DASH.  Basic document information (e.g., author name, thesis title, degree date, abstract) will also be collected via the submission system; this document information will be available in  HOLLIS , the Harvard Library catalog, and DASH (though the thesis itself will be available in DASH only if the student opts to allow this). Students can also make code or data for senior thesis work available. They can do this by posting the data to the Harvard  Dataverse  or including the code as a supplementary file in the DASH repository when submitting their thesis in the SEAS online submission system.

Whether or not a student opts to make the thesis available through DASH, SEAS will provide an electronic record copy of the thesis to the Harvard University Archives. The Archives may make this record copy of the thesis accessible to researchers in the Archives reading room via a secure workstation or by providing a paper copy for use only in the reading room.  Per University policy , for a period of five years after the acceptance of a thesis, the Archives will require an author’s written permission before permitting researchers to create or request a copy of any thesis in whole or in part. Students who wish to place additional restrictions on the record copy in the Archives must contact the Archives  directly, independent of the online submission system. 

Students interested in commercializing ideas in their theses may wish to consult Dr. Fawwaz Habbal , Senior Lecturer on Applied Physics, about patent protection. See Harvard's policy for information about ownership of software written as part of academic work.

In Materials Science & Mechanical Engineering

  • Undergraduate Engineering at Harvard
  • Concentration Requirements
  • How to Declare
  • Who are my Advisors?
  • Sophomore Forum
  • ABET Information
  • Research for Course Credit (ES 91R)
  • AB/SM Information
  • Peer Concentration Advisors (PCA) Program
  • Student Organizations
  • How to Apply
  • PhD Timeline
  • PhD Model Program (Course Guidelines)
  • Qualifying Exam
  • Committee Meetings
  • Committee on Higher Degrees
  • Research Interest Comparison
  • Collaborations
  • Cross-Harvard Engagement
  • Clubs & Organizations
  • Centers & Initiatives
  • Alumni Stories
  • History of Engineering Mechanics

What You Need to Know About Becoming a Mechanical Engineering Major

A mechanical engineering major learns how to use mechanical systems to design products that support society.

Becoming a Mechanical Engineering Major

Beautiful Female Engineer Working on Personal Computer in the High-Tech Industrial Factory, She Uses CAD Software Designing 3D Turbine. Over the Shoulder Shot. (Beautiful Female Engineer Working on Personal Computer in the High-Tech Industrial Factory

Getty Images

Mechanical engineering majors must be analytical and logical thinkers as well as resourceful and imaginative.

A mechanical engineering major studies movement, from the movement of particles to that of large machinery and the human body. By examining, creating and testing devices and other systems, students can learn to solve complex technological problems. Mechanical engineering is a broad area of study, and students can use their skills in a variety of fields, including energy, defense and security, robotics, health care, space exploration, and transportation.

What Is a Mechanical Engineering Major?

Mechanical engineering majors learn about motion and energy, and they study fluid, solid and thermal mechanics. They spend time in labs, where they develop problem-solving skills and evaluate and design products. These products can range from prosthetics to machine parts and car engines. After having gained both general and specialized knowledge, graduates in this field can work as entry-level mechanical engineers or pursue further education.

Mechanical engineering major vs. civil engineering major: What’s the difference?

The study of mechanical engineering differs from civil engineering, as it deals with the design and manufacturing of mechanical systems like those in machines and robots. Civil engineering deals with the design, construction and maintenance of structures like buildings, roads and tunnels. Civil engineers are involved in infrastructure projects for the creation of ports, waterways, highways, underground drainage systems and ecological restoration, for example.

While mechanical and civil engineering majors both develop their analytical skills and mathematics and physics knowledge, mechanical engineering coursework emphasizes computer-aided design software and critical thinking skills, while civil engineering coursework emphasizes project management and problem-solving skills as well as geology.

Common Coursework Mechanical Engineering Majors Can Expect

Coursework for mechanical engineering majors begins with foundational classes in math , physics and chemistry. Students also take mechanical engineering courses covering topics such as thermodynamics, fluid and solid mechanics, environmental science, and mechatronics. Advanced coursework may involve learning about systems and controls, energy science and technology, propulsion, design and manufacturing, heat transfer, and computational simulation.

Programs may vary, but mechanical engineering majors may be able to choose a concentration, such as automation and robotics, manufacturing, mechanics of materials, nuclear engineering, automotive engineering, or micro and nanoengineering.

Students may need to complete a senior thesis or capstone project, and many programs encourage majors to participate in research. For those interested in pursuing an advanced degree, some schools offer a combined bachelor’s and master’s degree in mechanical engineering .

How to Know if This Major Is the Right Fit for You

Mechanical engineering majors must be analytical and logical thinkers as well as resourceful and imaginative. They should enjoy working with data and using creativity and innovation to solve problems. These students should be leaders who can collaborate with others and communicate well. Mechanical engineers also need to be sensitive to the ethical, environmental, global, economic and societal impacts of their work.

Pick the Perfect Major

Discover the perfect major for you based on your innate wiring. The Innate Assessment sets you up for success by pairing you with majors, colleges and careers that fit your unique skills and abilities.

mechanical engineering bachelor thesis

What Can I Do With a Mechanical Engineering Major?

Mechanical engineering graduates have a range of potential career paths. These opportunities may be in the automotive, aerospace, computer and consumer product industries. Other possible industries include power production, robotics and automation, agriculture, mining, energy, and construction.

Graduates may choose to go into bioengineering, biomechanics, product design or manufacturing, or they can work with hydraulics, machine tools or instrumentation. Those interested in mechanical engineering jobs in nanotechnology – studying and developing microscopic materials and devices – can pair their foundational science knowledge with their design and fabrication capabilities. They can also work in consulting or management .

To be employed in different engineering sectors including industrial, nuclear, sales, aerospace, and biomedical and bioengineering, you need a bachelor’s degree in engineering or a related field, according to the Bureau of Labor Statistics. Engineering graduates with a broad mechanical background are qualified to enter many of these fields straight out of their undergraduate studies, but they may need formal training in a specific area, like industrial engineering, once landing the job.

Most entry-level engineers do not need to be licensed, but those in leadership positions can acquire a Professional Engineering (PE) license from the National Society for Professional Engineers . A credential as a professional engineer gives you the ability to sign off on projects, oversee other engineers, submit plans and drawings to a public authority, and work directly with clients. Some employers, like government agencies, may require applicants to be licensed professional engineers. States may also require those who teach engineering to hold a PE license.

Those who want to advance in the profession into supervisory or management roles, earn a higher salary and see a more positive job outlook can seek a master’s degree related to mechanical engineering or another subject, such as business, law, finance or medicine. Engineers who want to focus on aspects of creating a product, such as cost reduction or quality improvement, may find it beneficial to gain additional knowledge in business administration. Some professionals may earn graduate degrees to stay on top of emerging technologies, broaden their knowledge and enhance their project management skills. Mechanical engineers who want to teach should earn a Ph.D.

Data is sourced from the U.S. Bureau of Labor Statistics .

What Mechanical Engineering Majors Say

"My advice to potential Mechanical Engineering majors is to embrace the interdisciplinary nature of this discipline. Mechanical Engineering encompasses multiple aspects, from physics, to materials science, to computer-aided design, in-turn offering a diverse range of opportunities for exploration and specialization. You will find mechanical graduates in a multitude of fields which complements the utility of the degree and the freedom to apply your knowledge in any way you see fit. The most sought-after and important skill is the ability to analyze, conceive, and finally develop solutions. Therefore, cultivating strong problem-solving skills and a passion for innovation will be essential for success. I highly encourage any inquisitive or aspiring students to embark on a journey of exploration and inquiry of their environment, starting from understanding the intricacies of architectural structures to unraveling the complexities of engines."

– Michael Blackmon , senior at Lamar University, class of 2024

"As a senior physics and mechanical engineering student at the University of Wisconsin Stout I was able to learn core concepts about the principles of engineering, but I was also able to apply those skills in many of the in-depth and hands on lab classes that allowed me to understand how these concepts apply to the real world. Those courses, in partnership with my internship experience gave me the real-world experience I needed to be successful. My advice to anyone thinking about mechanical engineering, or any engineering really, would be to make sure you not only understand the core concepts of engineering but also apply them in any way possible whether it’s through lab courses, internships and co-ops or even just messing around with everyday items. Having that real world understanding and experience is what will get you ahead in this field more than anything else."

– Conrad Klem , senior at the University of Wisconsin-Stout, class of 2024

"A mechanical engineering degree offers insights into the world we live in, from the thermodynamic principles involved in the refrigerator you take for granted to the fluid dynamics that have allowed humans to fly for the past century. The best part of the degree, however, is not learning the concepts but applying them. My favorite classes during my studies have been the project-based courses where I am designing 3D models, building them, and problem-solving until they work. There is nothing better than the feeling of accomplishment when the prototype you have put so much effort into is successful. Engineering is involved in everything, and I’m grateful to have worked internships that span from designing jet engines to building a sustainable denim-dyeing machine. Engineers truly have the opportunity to change the world in every facet of life. Mechanical engineering is for curious people. If you’re constantly wondering how the things around you are made and how they work, then it might be for you. A mechanical engineering degree definitely requires a lot of dedication and effort, but it is also rewarding and exciting."

– Rachel Gardiner , senior at Boston University, class of 2024

"Mechanical Engineering is all about learning what makes the universe work and how you can make it work for you. With an understanding of the workings of the world around us, we can do truly incredible things. I’ve loved my experience as a mechanical engineering student because I have the opportunity to learn about the groundbreaking discoveries that people before me have made and I can take those ideas to make the world a better place. I would advise anyone looking to study mechanical engineering to be ready to fail, learn, and try again. Engineering is a tough field to study, and you can’t expect to get it all right on the first try. The engineering process is all about learning to fail and learning from those failures in order to succeed, so be comfortable with messing up and trying again!"

– Stefan James , sophomore at Baylor University, class of 2026

Schools Offering a Mechanical Engineering Major

Check out some schools below that offer engineering majors and find the full list of schools here that you can filter and sort.

2024 Best Colleges

mechanical engineering bachelor thesis

Search for your perfect fit with the U.S. News rankings of colleges and universities.

College Admissions: Get a Step Ahead!

Sign up to receive the latest updates from U.S. News & World Report and our trusted partners and sponsors. By clicking submit, you are agreeing to our Terms and Conditions & Privacy Policy .

Ask an Alum: Making the Most Out of College

You May Also Like

10 destination west coast college towns.

Cole Claybourn May 16, 2024

mechanical engineering bachelor thesis

Scholarships for Lesser-Known Sports

Sarah Wood May 15, 2024

mechanical engineering bachelor thesis

Should Students Submit Test Scores?

Sarah Wood May 13, 2024

mechanical engineering bachelor thesis

Poll: Antisemitism a Problem on Campus

Lauren Camera May 13, 2024

mechanical engineering bachelor thesis

Federal vs. Private Parent Student Loans

Erika Giovanetti May 9, 2024

mechanical engineering bachelor thesis

14 Colleges With Great Food Options

Sarah Wood May 8, 2024

mechanical engineering bachelor thesis

Colleges With Religious Affiliations

Anayat Durrani May 8, 2024

mechanical engineering bachelor thesis

Protests Threaten Campus Graduations

Aneeta Mathur-Ashton May 6, 2024

mechanical engineering bachelor thesis

Protesting on Campus: What to Know

Sarah Wood May 6, 2024

mechanical engineering bachelor thesis

Lawmakers Ramp Up Response to Unrest

Aneeta Mathur-Ashton May 3, 2024

mechanical engineering bachelor thesis

  • Skip to Content
  • Bulletin Home

MIT Bulletin

  • Schools >
  • School of Engineering >
  • Mechanical Engineering
  • Around Campus
  • Academic Program
  • Administration
  • Arts at MIT
  • Campus Media
  • Fraternities, Sororities, and Independent Living Groups
  • Medical Services
  • Priscilla King Gray Public Service Center
  • Religious Organizations
  • Student Government
  • Work/​Life and Family Resources
  • Advising and Support
  • Digital Learning
  • Disability and Access Services
  • Information Systems and Technology
  • Student Financial Services
  • Writing and Communication Center
  • Major Course of Study
  • General Institute Requirements
  • Independent Activites Period
  • Undergraduate Research Opportunities Program
  • First-​Year Advising Seminars
  • Interphase EDGE/​x
  • Edgerton Center
  • Grading Options
  • Study at Other Universities
  • Internships Abroad
  • Career Advising and Professional Development
  • Teacher Licensure and Education
  • ROTC Programs
  • Financial Aid
  • Medical Requirements
  • Graduate Study at MIT
  • General Degree Requirements
  • Other Institutions
  • Registration
  • Term Regulations and Examination Policies
  • Academic Performance and Grades
  • Policies and Procedures
  • Privacy of Student Records
  • Abdul Latif Jameel Poverty Action Lab
  • Art, Culture, and Technology Program
  • Broad Institute of MIT and Harvard
  • Center for Archaeological Materials
  • Center for Bits and Atoms
  • Center for Clinical and Translational Research
  • Center for Collective Intelligence
  • Center for Computational Science and Engineering
  • Center for Constructive Communication
  • Center for Energy and Environmental Policy Research
  • Center for Environmental Health Sciences
  • Center for Global Change Science
  • Center for International Studies
  • Center for Real Estate
  • Center for Transportation &​ Logistics
  • Computer Science and Artificial Intelligence Laboratory
  • Concrete Sustainability Hub
  • D-​Lab
  • Deshpande Center for Technological Innovation
  • Division of Comparative Medicine
  • Haystack Observatory
  • Initiative on the Digital Economy
  • Institute for Medical Engineering and Science
  • Institute for Soldier Nanotechnologies
  • Institute for Work and Employment Research
  • Internet Policy Research Initiative
  • Joint Program on the Science and Policy of Global Change
  • Knight Science Journalism Program
  • Koch Institute for Integrative Cancer Research
  • Laboratory for Financial Engineering
  • Laboratory for Information and Decision Systems

Laboratory for Manufacturing and Productivity

  • Laboratory for Nuclear Science
  • Legatum Center for Development and Entrepreneurship
  • Lincoln Laboratory
  • Martin Trust Center for MIT Entrepreneurship
  • Materials Research Laboratory
  • McGovern Institute for Brain Research
  • Microsystems Technology Laboratories
  • MIT Center for Art, Science &​ Technology
  • MIT Energy Initiative
  • MIT Environmental Solutions Initiative
  • MIT Kavli Institute for Astrophysics and Space Research
  • MIT Media Lab
  • MIT Office of Innovation
  • MIT Open Learning
  • MIT Portugal Program
  • MIT Professional Education
  • MIT Sea Grant College Program
  • Nuclear Reactor Laboratory
  • Operations Research Center
  • Picower Institute for Learning and Memory
  • Plasma Science and Fusion Center
  • Research Laboratory of Electronics
  • Simons Center for the Social Brain
  • Singapore-​MIT Alliance for Research and Technology Centre
  • Sociotechnical Systems Research Center
  • Whitehead Institute for Biomedical Research
  • Women's and Gender Studies Program
  • Architecture (Course 4)
  • Art and Design (Course 4-​B)
  • Art, Culture, and Technology (SM)
  • Media Arts and Sciences
  • Planning (Course 11)
  • Urban Science and Planning with Computer Science (Course 11-​6)
  • Aerospace Engineering (Course 16)
  • Engineering (Course 16-​ENG)
  • Biological Engineering (Course 20)
  • Chemical Engineering (Course 10)
  • Chemical-​Biological Engineering (Course 10-​B)
  • Chemical Engineering (Course 10-​C)
  • Engineering (Course 10-​ENG)
  • Engineering (Course 1-​ENG)
  • Electrical Engineering and Computer Science (Course 6-​2)
  • Electrical Science and Engineering (Course 6-​1)
  • Computation and Cognition (Course 6-​9)
  • Computer Science and Engineering (Course 6-​3)
  • Computer Science and Molecular Biology (Course 6-​7)
  • Electrical Engineering and Computer Science (MEng)
  • Computer Science and Molecular Biology (MEng)
  • Health Sciences and Technology
  • Archaeology and Materials (Course 3-​C)
  • Materials Science and Engineering (Course 3)
  • Materials Science and Engineering (Course 3-​A)
  • Materials Science and Engineering (PhD)
  • Mechanical Engineering (Course 2)
  • Mechanical and Ocean Engineering (Course 2-​OE)
  • Engineering (Course 2-​A)
  • Nuclear Science and Engineering (Course 22)
  • Engineering (Course 22-​ENG)
  • Anthropology (Course 21A)
  • Comparative Media Studies (CMS)
  • Writing (Course 21W)
  • Economics (Course 14-​1)
  • Mathematical Economics (Course 14-​2)
  • Data, Economics, and Design of Policy (MASc)
  • Economics (PhD)
  • Global Studies and Languages (Course 21G)
  • History (Course 21H)
  • Linguistics and Philosophy (Course 24-​2)
  • Philosophy (Course 24-​1)
  • Linguistics (SM)
  • Literature (Course 21L)
  • Music (Course 21M-​1)
  • Theater Arts (Course 21M-​2)
  • Political Science (Course 17)
  • Science, Technology, and Society/​Second Major (STS)
  • Business Analytics (Course 15-​2)
  • Finance (Course 15-​3)
  • Management (Course 15-​1)
  • Biology (Course 7)
  • Chemistry and Biology (Course 5-​7)
  • Brain and Cognitive Sciences (Course 9)
  • Chemistry (Course 5)
  • Earth, Atmospheric and Planetary Sciences (Course 12)
  • Mathematics (Course 18)
  • Mathematics with Computer Science (Course 18-​C)
  • Physics (Course 8)
  • Department of Electrical Engineering and Computer Science
  • Institute for Data, Systems, and Society
  • Chemistry and Biology
  • Climate System Science and Engineering
  • Computation and Cognition
  • Computer Science and Molecular Biology
  • Computer Science, Economics, and Data Science
  • Humanities and Engineering
  • Humanities and Science
  • Urban Science and Planning with Computer Science
  • African and African Diaspora Studies
  • American Studies
  • Ancient and Medieval Studies
  • Applied International Studies
  • Asian and Asian Diaspora Studies
  • Biomedical Engineering
  • Energy Studies
  • Entrepreneurship and Innovation
  • Environment and Sustainability
  • Latin American and Latino/​a Studies
  • Middle Eastern Studies

Polymers and Soft Matter

  • Public Policy
  • Russian and Eurasian Studies
  • Statistics and Data Science
  • Women's and Gender Studies
  • Advanced Urbanism
  • Computational and Systems Biology

Computational Science and Engineering

  • Design and Management (IDM &​ SDM)
  • Joint Program with Woods Hole Oceanographic Institution

Leaders for Global Operations

  • Microbiology
  • Music Technology and Computation
  • Operations Research
  • Real Estate Development
  • Social and Engineering Systems
  • Supply Chain Management

Technology and Policy

  • Transportation
  • School of Architecture and Planning
  • School of Engineering
  • Aeronautics and Astronautics Fields (PhD)
  • Artificial Intelligence and Decision Making (Course 6-​4)
  • Biological Engineering (PhD)
  • Nuclear Science and Engineering (PhD)
  • School of Humanities, Arts, and Social Sciences
  • Humanities (Course 21)
  • Humanities and Engineering (Course 21E)
  • Humanities and Science (Course 21S)
  • Sloan School of Management
  • School of Science
  • Brain and Cognitive Sciences (PhD)
  • Earth, Atmospheric and Planetary Sciences Fields (PhD)
  • Interdisciplinary Programs (SB)
  • Climate System Science and Engineering (Course 1-​12)
  • Computer Science, Economics, and Data Science (Course 6-​14)
  • Interdisciplinary Programs (Graduate)
  • Computation and Cognition (MEng)
  • Computational Science and Engineering (SM)
  • Computational Science and Engineering (PhD)
  • Computer Science, Economics, and Data Science (MEng)
  • Leaders for Global Operations (MBA/​SM and SM)
  • Music Technology and Computation (SM and MASc)
  • Real Estate Development (SM)
  • Statistics (PhD)
  • Supply Chain Management (MEng and MASc)
  • Technology and Policy (SM)
  • Transportation (SM)
  • Aeronautics and Astronautics (Course 16)
  • Aerospace Studies (AS)
  • Civil and Environmental Engineering (Course 1)
  • Comparative Media Studies /​ Writing (CMS)
  • Comparative Media Studies /​ Writing (Course 21W)
  • Computational and Systems Biology (CSB)
  • Computational Science and Engineering (CSE)
  • Concourse (CC)
  • Data, Systems, and Society (IDS)
  • Earth, Atmospheric, and Planetary Sciences (Course 12)
  • Economics (Course 14)
  • Edgerton Center (EC)
  • Electrical Engineering and Computer Science (Course 6)
  • Engineering Management (EM)
  • Experimental Study Group (ES)
  • Global Languages (Course 21G)
  • Health Sciences and Technology (HST)
  • Linguistics and Philosophy (Course 24)
  • Management (Course 15)
  • Media Arts and Sciences (MAS)
  • Military Science (MS)
  • Music and Theater Arts (Course 21M)
  • Naval Science (NS)
  • Science, Technology, and Society (STS)
  • Special Programs
  • Supply Chain Management (SCM)
  • Urban Studies and Planning (Course 11)
  • Women's and Gender Studies (WGS)

Department of Mechanical Engineering

Mechanical engineering is concerned with the responsible development of products, processes, and power, at scales ranging from molecules to large and complex systems. Mechanical engineering principles and skills are involved at some stage during the conception, design, development, and manufacture of every human-made object with moving parts. Many innovations crucial to our future will have their roots in the world of mass, motion, forces, and energy—the world of mechanical engineers.

Mechanical engineering is one of the broadest and most versatile of the engineering professions. This is reflected in the portfolio of current activities in the Department of Mechanical Engineering (MechE), one that has widened rapidly in the past decade. Today, our faculty are involved in a wide range of projects, including designing tough hydrogels, using nanostructured surfaces for clean water and thermal management of microelectronics, developing efficient methods for robust design, the building of robotics for land and underwater exploration, creating optimization methods that autonomously generate decision-making strategies, developing driverless cars, inventing cost-effective photovoltaic cells, developing thermal and electrical energy storage systems, using acoustics to explore the ocean of one of Jupiter's moons, studying the biomimetics of swimming fish for underwater sensing applications, developing physiological models for metastatic cancers, inventing novel medical devices, exploring 3D printing of nanostructures and macrostructures, and developing coatings to create nonstick surfaces.

The department carries out its mission with a focus on the seven areas of excellence described below. Our education and research agendas are informed by these areas, and these are the areas in which we seek to impassion the best undergraduate and graduate students.

Area 1: Mechanics: Modeling, Experimentation, and Computation (MMEC). At the heart of mechanical engineering lies the ability to measure, describe, and model the physical world of materials and mechanisms. The MMEC area focuses on teaching the fundamental principles, essential skills, and scientific tools necessary for predicting thermo-mechanical phenomena and using such knowledge in rational engineering design. We provide students with the foundations in experimental, modeling, and computational skills needed to understand, exploit, and enhance the thermo-physical behavior of advanced engineering devices and systems, and to make lifelong creative contributions at the forefront of the mechanical sciences and beyond. Research in the MMEC area focuses on four key thrusts:

  • Computational mechanics
  • Fluid dynamics and transport
  • Mechanics of solid materials
  • Nonlinear dynamics

The fundamental engineering principles embodied in these topics can be applied over a vast range of force, time, and length scales, and applications of interest in the MMEC area span the spectrum from the nano/micro world to the geophysical domain. A Course 2-A track is offered in this area.

Area 2: Design, Manufacturing, and Product Development. Design, manufacturing, and product development is the complete set of activities needed to bring new devices and technologies to the marketplace. These activities span the entire product life-cycle, from the identification of a market opportunity or need, through design, testing, manufacture and distribution, and end of useful life. Our work includes everything from understanding the voice of the customer to finding new ways of processing materials to improving product performance and tracking product flow through a distribution network. A central component of this area is the design and construction of novel equipment, either for consumer products or for industrial uses. This spans scales from meters to microns, and involves mechanical, electronic and electromechanical devices. Many MechE students apply design, manufacturing, and product development skills and techniques to extracurricular design work for organizations and student activities such as Design that Matters, Formula SAE, Satellite Engineering Team, and the Solar Electric Vehicle Team. Some projects lead to flagship products for new companies. A Course 2-A track in product development is offered along with a unique Master of Engineering degree in manufacturing.

Area 3: Controls, Instrumentation, and Robotics. The mission in this area is to promote research and education for automating, monitoring, and manipulating systems. The focus is on system-level behavior that emerges primarily from interactions and cannot be explained from individual component behavior alone. We seek to identify fundamental principles and methodologies that enable systems to exhibit intelligent, goal-oriented behavior, and develop innovative instruments to monitor, manipulate, and control systems. The core competencies in which we seek to excel are:

  • Methodologies for understanding system behavior through physical modeling, identification, and estimation.
  • Technologies for sensors and sensor networks; actuators and energy transducers; and systems for monitoring, processing, and communicating information.
  • Fundamental theories and methodologies for analyzing, synthesizing, and controlling systems; learning and adapting to unknown environments; and effectively achieving task goals.

We seek to apply our core competencies to diverse areas of social, national, and global needs. These include health care, security, education, medical and security related imaging, space and ocean exploration, and autonomous systems in air, land, and underwater environments. We also offer a Course 2-A track in this area.

Area 4: Energy Science and Engineering. Energy is one of the most significant challenges facing humanity and is a central focus of mechanical engineering's contribution to society. Our research focuses on efficient and environmentally friendly energy conversion and utilization from fossil and renewable resources. Programs in the department cover many of the fundamental and technological aspects of energy, with applications to high performance combustion engines, batteries and fuel cells, thermoelectricity and photovoltaics, wind turbines, and efficient buildings. Work in very-low-temperature thermodynamics includes novel sub-Kelvin refrigeration. Efforts in high-temperature thermodynamics and its coupling with transport and chemistry include internal combustion engine analysis, design, and technology; control of combustion dynamics and emissions; thermoelectric energy conversion; low- and high-temperature fuel cells; and novel materials for rechargeable batteries and thermal energy storage. Work in heat and mass transport covers thermal control of electronics from manufacturing to end use; microscale and nanoscale transport phenomena; desalination and water purification; high heat flux engineering; and energy-efficient building technology. Work in renewable energy encompasses the design of offshore and floating wind turbines and tidal wave machines; and analysis and manufacturing of photovoltaic and thermophotovoltaic devices. Energy storage, hybrid systems, fuel synthesis, and integration of energy systems are active research areas in the department. We also offer a Course 2-A track in energy.

Area 5: Ocean Science and Engineering. The oceans cover over 70 percent of the planet's surface and constitute a critical element in our quality of life, including the climate and the resources and food that we obtain from the sea. This area's objectives are to support the undergraduate and graduate programs in ocean engineering, including the naval construction program, the MIT/Woods Hole Oceanographic Institution Joint Program in Applied Oceanography and the Course 2-OE degree in mechanical and ocean engineering. It also serves as the focus point of ocean-related research and education at MIT. Major current research activities include marine robotics and navigation of underwater vehicles and smart sensors for ocean mapping and exploration; biomimetics to extract new understanding for the development of novel ocean systems studying marine animals; the study of the mechanics and fluid mechanics of systems for ultradeep ocean gas and oil extraction; ocean wave and offshore wind energy extraction; the free surface hydrodynamics of ocean-going vehicles; the development of advanced naval and commercial ships and submersibles, including the all-electric ship; the mechanics and crashworthiness of ocean ships and structures; ocean transportation systems; ocean acoustics for communication, detection, and mapping in the ocean; and adaptive sampling and multidisciplinary forecasting of the ocean behavior. The design of complex ocean systems permeates all these areas and provides the cohesive link for our research and teaching activities.

Area 6: Bioengineering. Engineering analysis, design, and synthesis are needed to understand biological processes and to harness them successfully for human use. Mechanical forces and structures play an essential role in governing the function of cells, tissues, and organs. Our research emphasizes integration of molecular-to-systems–level approaches to probe the behavior of natural biological systems, and to design and build new systems, ranging from analysis of gene regulatory networks to microfluidic assays for drug screening or new technologies for quantitative, high-throughput biomedical imaging. Emphasis is also placed on creating new physiological or disease models, including multicellular engineered living systems, using nano- and micro-fabrication as well as new biomaterials. Applications include understanding, diagnosing, and treating diseases such as atherosclerosis, osteoarthritis, spinal cord injury or liver failure; new tools for drug discovery and drug development; and tissue-engineered scaffolds and devices for in vivo regeneration of tissues and organs. Work also includes design and fabrication of new devices and tools for rehabilitation of stroke victims and for robotic surgery. We offer many elective subjects at the undergraduate and graduate levels, as well as a bioengineering track in Course 2-A.

Area 7: Nano/Micro Science and Technology. The miniaturization of devices and systems of ever-increasing complexity has been a fascinating and productive engineering endeavor during the past few decades. Near and long term, this trend will be amplified as physical understanding of the nano world expands, and widespread commercial demand drives the application of manufacturing to micro- and nanosystems. Micro- and nanotechnology can have tremendous impact on a wide range of mechanical systems. Examples include microelectromechanical system (MEMS) devices and products that are already deployed as automobile airbag sensors, smart phone parts, and for drug delivery; stronger and lighter nanostructured materials now used in airplanes and automobiles; and nanostructured energy conversion devices that significantly improve the efficiency of renewable energy systems. Research in this area cuts across mechanical engineering and other disciplines. Examples include sensors and actuators; micro-fluidics, heat transfer, and energy conversion at the micro- and nanoscales; optical and biological micro- and nano-electromechanical systems (MEMS and NEMS); engineered nanomaterials; atomic scale precision engineering; and the nano-phoptonics in measurement, sensing, and systems design. Students interested in micro/nano technology are encouraged to explore the Course 2-A nanoengineering track.

In order to prepare the mechanical engineers of the future, the department has developed undergraduate and graduate educational programs of the depth and breadth necessary to address the diverse and rapidly changing technological challenges that society faces. Our educational programs combine the rigor of academic study with the excitement and creativity inherent to innovation and research.

Bachelor of Science in Mechanical Engineering (Course 2)

Bachelor of science in engineering (course 2-a), bachelor of science in mechanical and ocean engineering (course 2-oe), minor in mechanical engineering, undergraduate study.

The Department of Mechanical Engineering (MechE) offers three programs of undergraduate study. The first of these, the traditional program that leads to the bachelor's degree in mechanical engineering, is a more structured program that prepares students for a broad range of career choices in the field of mechanical engineering. The second program leads to a bachelor's degree in engineering and is intended for students whose career objectives require greater flexibility. It allows them to combine the essential elements of the traditional mechanical engineering program with study in another, complementary field. The third program, in mechanical and ocean engineering, is also a structured program for students interested in mechanical engineering as it applies to the engineering aspects of ocean science, exploration, and utilization, and of marine transportation.

All of the educational programs in the department prepare students for professional practice in an era of rapidly advancing technology. They combine a strong base in the engineering sciences (mechanics, materials, fluid and thermal sciences, systems and control) with project-based laboratory and design experiences. All strive to develop independence, creative talent, and leadership, as well as the capability for continuing professional growth.

The program in mechanical engineering provides a broad intellectual foundation in the field of mechanical engineering. The program develops the relevant engineering fundamentals, includes various experiences in their application, and introduces the important methods and techniques of engineering practice.

The educational objectives of the program leading to the degree Bachelor of Science in Mechanical Engineering are that:

Within a few years of graduation, a majority of our graduates will have completed or be progressing through top graduate programs; advancing in leadership tracks in industry, non-profit organizations, or the public sector; or pursuing entrepreneurial ventures. In these roles they will: (1) apply a deep working knowledge or technical fundamentals in areas related to mechanical, electromechanical, and thermal systems to address needs of the customer and society; (2) develop innovative technologies and find solutions to engineering problems; (3) communicate effectively as members of multidisciplinary teams; (4) be sensitive to professional and societal contexts and committed to ethical action; (5) lead in the conception, design, and implementation of new products, processes, services, and systems.

Students are urged to contact the MechE Undergraduate Office as soon as they have decided to enter mechanical engineering so that a faculty advisor may be assigned. Students, together with their faculty advisors, plan a program that best utilizes the departmental electives and the 48 units of unrestricted electives available in the Course 2 degree program.

This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET)  as a mechanical engineering degree.

Course 2-A is designed for students whose academic and career goals demand greater breadth and flexibility than are allowed under the mechanical engineering program, Course 2. To a large extent, the 2-A program allows students an opportunity to tailor a curriculum to their own needs, starting from a solid mechanical engineering base. The program combines a rigorous grounding in core mechanical engineering topics with an individualized course of study focused on a second area that the student designs with the help and approval of the 2-A faculty advisor. The program leads to the degree Bachelor of Science in Engineering.

This program is accredited by the Engineering Accreditation Commission of ABET as an engineering degree.

The educational objectives of the program leading to the degree of Bachelor of Science in Engineering are that:

A significant part of the 2-A curriculum consists of electives chosen by the student to provide in-depth study of a field of the student's choosing. A wide variety of popular concentrations are possible in which well-selected academic subjects complement a foundation in mechanical engineering and general Institute requirements. Some examples of potential concentrations include robotics, engineering management, product development, biomedical engineering and pre-medicine, energy conversion engineering, sustainable development, architecture and building technology, and any of the seven departmental focus areas mentioned above. The MechE faculty have developed specific recommendations in some of these areas; details are available from the MechE Undergraduate Office and on the departmental website.

Concentrations are not limited to those listed above. Students are encouraged to design and propose technically oriented concentrations that reflect their own needs and those of society.

The student's overall program must contain a total of at least one and one-half years of engineering content (150 units) appropriate to the student's field of study. The required core and second-level subjects include approximately 78 units of engineering topics. The self-designed concentration must include at least 72 more units of engineering topics. While engineering topics are usually covered through engineering subjects, subjects outside the School of Engineering may provide material essential to the engineering program of some concentrations. For example, management subjects usually form an essential part of an engineering management concentration. In all cases, the relationship of concentration subjects to the particular theme of the concentration must be obvious.

To pursue the 2-A degree, students must submit the online 2-A enrollment form no later than Add Date of their second term in the program.

This program is intended for students who are interested in combining a firm foundation in mechanical engineering with a specialization in ocean engineering. The program includes engineering aspects of the ocean sciences, ocean exploration, and utilization of the oceans for transportation, defense, and extracting resources. Theory, experiment, and computation of ocean systems and flows are covered in a number of subjects, complementing a rigorous mechanical engineering program; a hands-on capstone design class allows students to master the design of advanced marine systems, including autonomous underwater vehicles and smart sensors.

This program is accredited by the Engineering Accreditation Commission of ABET in both mechanical engineering and ocean engineering.

The educational objectives of the program leading to the degree Bachelor of Science in Mechanical and Ocean Engineering are that within a few years of graduation, a majority of our graduates will have completed or be progressing through top graduate programs; advancing in leadership tracks in industry, non-profit organizations, or the public sector; or pursuing entrepreneurial ventures. In these roles they will: (1) apply a deep working knowledge or technical fundamentals in areas related to mechanical, electromechanical, and thermal systems to address needs of the customer and society; (2) develop innovative technologies and find solutions to engineering problems; (3) communicate effectively as members of multidisciplinary teams; (4) be sensitive to professional and societal contexts and committed to ethical action; (5) lead in the conception, design, and implementation of new products, processes, services, and systems.

Graduates have exciting opportunities in offshore industries, naval architecture, the oceanographic industry, the Navy or government, or for further study in graduate school.

Students pursuing a minor in the department must complete a total of six 12-unit subjects in the Mechanical Engineering Department program. At least three of the subjects must be selected from among the required subjects for the Course 2 and Course 2-OE degree programs, which are listed below. In addition, two subjects may be selected from restricted electives in those programs. 

Further information on undergraduate programs may be obtained from the MechE Undergraduate Office , Room 1-110, 617-253-230.

Master of Science in Mechanical Engineering

Master of science in ocean engineering/master of science in naval architecture and marine engineering/master of science in oceanographic engineering, master of engineering in advanced manufacturing and design, mechanical engineer's degree, naval engineer's degree—program in naval construction and engineering, doctor of philosophy and doctor of science, graduate study.

The Department of Mechanical Engineering (MechE) provides opportunities for graduate work leading to the following degrees: Master of Science in Mechanical Engineering, Master of Science in Ocean Engineering, Master of Science in Naval Architecture and Marine Engineering, Master of Science in Oceanographic Engineering, Master of Engineering in Manufacturing, degree of Mechanical Engineer, degree of Naval Engineer, and the Doctor of Philosophy (PhD) or Doctor of Science (ScD), which differ in name only.

The Master of Engineering in Manufacturing degree is a 12-month professional degree intended to prepare students for technical leadership in the manufacturing industries.

The Mechanical Engineer's and Naval Engineer's degrees offer preparation for a career in advanced engineering practice through a program of advanced coursework that goes well beyond the master's level. These degrees are not a stepping stone to the PhD.

The Doctor of Philosophy (or Science), the highest academic degree offered, is awarded upon the completion of a program of advanced study and significant original research, design, or development.

Admission Requirements for Graduate Study

Applications to the mechanical engineering graduate program are accepted from persons who have completed, or will have completed by the time they arrive, a bachelor's degree if they are applying for a master's degree, or a master's degree if they are applying for a PhD. Most incoming students have a degree in mechanical engineering or ocean engineering, or some related branch of engineering. The department's admission criteria are not specific, however, and capable students with backgrounds in different branches of engineering or in science may gain entry. Nevertheless, to qualify for a graduate degree, the candidate is expected to have had at least an undergraduate-level exposure to the core subject areas in mechanical engineering (applied mechanics, dynamics, fluid mechanics, thermodynamics, materials, control systems, and design) and to be familiar with basic electrical circuits and electromagnetic field theory.

Applications for September entry are due on December 15 of the previous year and decisions are reported in March. International students applying from abroad may be admitted, but they will be allowed to register only if they have full financial support for the first year.

All applicants to the graduate program in mechanical engineering must submit the GRE test results. International students whose native language is not English are required to take either the International English Language Testing System (IELTS) exam and receive a minimum score of 7 or the TOEFL exam with a minimum acceptable score of 577 (PBT), 233 (CBT) or 100 (iBT).

Early Admission to Master's Degree Programs in Mechanical Engineering

At the end of the junior year, extraordinarily qualified students in the Department of Mechanical Engineering will be invited to apply for early admission to the graduate program. Students who are admitted will then be able to enroll in core graduate subjects during the senior year and to find a faculty advisor who is willing to start and supervise research for the master's thesis while the student is still in the senior year. With the consent of the faculty advisor, the student may also use a portion of the work conducted towards the master's thesis in the senior undergraduate year to satisfy the requirements of the bachelor's thesis.

Writing Ability Requirement

The Mechanical Engineering Department requires that all incoming graduate students demonstrate satisfactory English writing ability, or successfully complete appropriate training in writing. This requirement reflects the faculty's conviction that writing is an essential skill for all engineers. All incoming graduate students, native as well as international, must take the departmental writing ability test, which is administered online in June. Depending on the results, a student will either pass or be required to take a short course during the Independent Activities Period (IAP) in January.

To qualify for the Master of Science in Mechanical Engineering, a student must complete at least 72 credits of coursework, not including thesis. Of these, at least 48 must be graduate subjects (refer to the Guide to Graduate Study [PDF] on the MechE website). The remainder of the 72 units may include advanced undergraduate subjects that are not requirements in the undergraduate mechanical engineering curriculum.

At least three of the graduate subjects must be taken in mechanical engineering sciences (refer to the Guide to Graduate Study [PDF] on the MechE website). Students must take at least one graduate mathematics subject (12 units) offered by the MIT Mathematics Department. For the Master of Science in Oceanographic Engineering, see also the requirements listed in the Joint Program with Woods Hole Oceanographic Institution.

Finally, a thesis is required. The thesis is an original work of research, development, or design, performed under the supervision of a faculty or research staff member, and is a major part of any graduate program in the Mechanical Engineering Department. A master's student usually spends as much time on thesis work as on coursework. A master's degree usually takes about one and one-half to two years to complete.

The requirements for each of these three degrees are that the student takes 72 credit units of graduate subjects and complete a thesis.

At least three of the subjects must be chosen from a prescribed list of ocean engineering subjects (refer to the Guide to Graduate Study [PDF] on the MechE website). Students must also take at least one graduate mathematics subject (12 units) offered by MIT's Mathematics Department. For the Master of Science in Oceanographic Engineering, see also the requirements listed under the Joint Program with Woods Hole Oceanographic Institution.

The required thesis is an original work of research, development, or design, conducted under the supervision of a faculty or senior research staff member. The thesis usually takes between one and two years to complete.

The Master of Engineering in Advanced Manufacturing and Design is a 12-month professional degree in mechanical engineering that is intended to prepare the student to assume a role of technical leadership in the manufacturing industries. The degree is aimed at practitioners who will use this knowledge to become leaders in existing, as well emerging, manufacturing companies. To qualify for this degree, a student must complete a highly integrated set of subjects and projects that cover the process, product, system, and business aspects of manufacturing, totaling 90 units, plus complete a group-based thesis project with a manufacturing industry. While centered in engineering and firmly grounded in the engineering sciences, this degree program considers the entire enterprise of manufacturing. Students will gain both a broad understanding of the many facets of manufacturing and a knowledge of manufacturing fundamentals from which to build new technologies and businesses. The admission process is identical to that of the Master of Science degree, with the exception that two additional essay questions are required.

Learners who earn an MITx Principles of Manufacturing MicroMasters Credential may apply to the Advanced Manufacturing and Design program and, upon acceptance, would be credited 48 units of advanced standing credit (equivalent to approximately one-third of the full degree program and one semester on campus).

The Mechanical Engineer's degree provides an opportunity for further study beyond the master's level for those who wish to enter engineering practice rather than research. This degree emphasizes breadth of knowledge in mechanical engineering and its economic and social implications, and is quite distinct from the PhD, which emphasizes depth and originality of research.

The engineer's degree requires a broad program of advanced coursework in mechanical engineering totaling at least 162 credit units (typically about 14 subjects), including those taken during the master's degree program. The engineer's degree program is centered around the application of engineering principles to advanced engineering problems and includes a Mechanical Engineering examination and an applications-oriented thesis, which may be an extension of a suitable master's thesis. An engineer's degree typically requires at least one year of study beyond the master's degree.

The Naval Construction and Engineering (NVE) program provides US Navy and US Coast Guard officers, foreign naval officers, and civilian students interested in ships and ship design a broad graduate-level education for a career as a naval engineer.

The program leads to the Naval Engineer's degree, which requires a higher level of professional competence and broader range of knowledge than is required for the degree of Master of Science in Naval Architecture and Marine Engineering or Ocean Engineering. Subjects in the areas of economics, industrial management, and public policy and law, and at least 12 units of comprehensive design are required, in addition to an in-depth curriculum that includes naval architecture, hydrodynamics, ship structures, materials science, and power and propulsion. The program is appropriate for naval officers and civilians who plan to participate in the design and construction of naval ships, as well as those interested in commercial ship design.

For students working toward a simultaneous Naval Engineer's degree and a master's degree, a single thesis is generally acceptable, provided it is appropriate to the specifications of both degrees, demonstrating an educational maturity expected of the Naval Engineer's degree.

The highest academic degree is the Doctor of Science, or Doctor of Philosophy (the two differ only in name). This degree is awarded upon the completion of a program of advanced study, and the performance of significant original research, design, or development. Doctoral degrees are offered in all areas represented by the department's faculty.

Students become candidates for the doctorate by passing the doctoral qualifying examinations. The doctoral program includes a major program of advanced study in the student's principal area of interest, and a minor program of study in a different field. The MechE Graduate Office should be consulted about the deadline for passing the qualifying exam.

The principal component of the program is the thesis. The thesis is a major, original work that makes a significant research, development, or design contribution in its field. The thesis and the program of study are done under a faculty supervisor and a doctoral committee selected by the student and his or her supervisor, and perhaps other interested faculty members. The committee makes an annual examination of the candidate's progress and makes a final recommendation for a public defense of the work. The doctoral program typically requires three years of work beyond the master's degree, although this time is strongly topic dependent.

Interdisciplinary Programs

Graduate students registered in the Department of Mechanical Engineering may elect to participate in interdisciplinary programs of study.

The  Master of Science in Computational Science and Engineering (CSE SM)  is an interdisciplinary program for students interested in the development, analysis, and application of computational approaches to science and engineering. The curriculum is designed with a common core serving all science and engineering disciplines and an elective component focusing on specific disciplinary topics. Students may pursue the CSE SM as a standalone degree or as leading to the CSE PhD program described below.

The Interdisciplinary Doctoral Program in Computational Science and Engineering (CSE PhD) allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a thesis through one of the participating host departments in the School of Engineering or School of Science. The program is administered jointly by the Center for Computational Science and Engineering (CCSE) and the host departments; the emphasis of thesis research activities is the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science.

For more information, see the program descriptions under Interdisciplinary Graduate Programs.

Joint Program with the Woods Hole Oceanographic Institution

The Joint Program with the Woods Hole Oceanographic Institution (WHOI)  is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail under Interdisciplinary Graduate Programs.

The 24-month Leaders for Global Operations (LGO)  program  combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field . During the two-year program, students complete a six-month internship  at one of LGO's partner companies, where  they conduct  research that  forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks.  After graduation, alumni  lead strategic initiatives in high-tech, operations, and manufacturing companies.

The Program in Polymers and Soft Matter (PPSM)  offers students from participating departments an interdisciplinary core curriculum in polymer science and engineering, exposure to the broader polymer community through seminars, contact with visitors from industry and academia, and interdepartmental collaboration while working towards a PhD or ScD degree.

Research opportunities include functional polymers, controlled drug delivery, nanostructured polymers, polymers at interfaces, biomaterials, molecular modeling, polymer synthesis, biomimetic materials, polymer mechanics and rheology, self-assembly, and polymers in energy. The program is described in more detail under Interdisciplinary Graduate Programs.

The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student's chosen technical field with courses in economics, politics, quantitative methods, and social science. Many students combine TPP's curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. See the program description under the Institute for Data, Systems, and Society.

Financial Support

The Department of Mechanical Engineering offers three types of financial assistance to graduate students: research assistantships, teaching assistantships, and fellowships.

The majority of students in the department are supported by research assistantships (RAs), which are appointments to work on particular research projects with particular faculty members. Faculty members procure research grants for various projects and hire graduate students to carry out the research. The research is almost invariably structured so that it becomes the student's thesis. An RA appointment provides a full-tuition scholarship (i.e., covers all tuition) plus a salary that is adequate for a single person. The financial details are outlined in a separate handout available from the MechE Graduate Office. An RA may register for a maximum of 24 units (about two subjects) of classroom subjects per regular term and 12 units in the summer term, and must do at least the equivalent of 24 units of thesis (i.e., research on the project) per term. (Please note that Master of Engineering in Manufacturing students are not eligible for RA or TA positions since their subject credits exceed these limits.)

Teaching assistants (TAs) are appointed to work on specific subjects of instruction. As the name implies, they usually assist a faculty member in teaching, often grading homework problems and tutoring students. In the Mechanical Engineering Department, TAs are very seldom used for regular full-time classroom teaching. Full-time TAs are limited to 24 units of credit per regular term, including both classroom subjects and thesis. The TA appointment does not usually extend through the summer.

A fellowship provides the student with a direct grant, and leaves the student open to select his or her own research project and supervisor. A limited number of awards and scholarships are available to graduate students directly through the department. A number of students are also supported by fellowships from outside agencies, such as the National Science Foundation, Office of Naval Research, and Department of Defense. Scholarships are awarded each year by the Society of Naval Architects and Marine Engineers. These awards are normally granted to applicants whose interest is focused on naval architecture and marine engineering or on ocean engineering. Applications are made directly to the granting agency, and inquiries for the fall term should be made in the preceding fall term.

Prospective students are invited to communicate with the Department regarding any of these educational and financial opportunities.

Experience has shown that the optimum graduate program consists of about equal measures of coursework and research, consistent with an RA appointment. The main advantage of a fellowship is a greater freedom in choosing a research project and supervisor. A teaching assistantship gives the student teaching experience and can also be extremely valuable for reviewing basic subject material—for example, in preparation for the doctoral qualifying exams. It does not, however, leave much time for thesis research and may extend the time that the student needs to complete his or her degree.

For additional information on mechanical engineering graduate admissions, contact Una Sheehan. For general inquiries on the mechanical engineering graduate program, contact Leslie Regan. All can be reached in the MechE Graduate Office , Room 1-112, 617-253-2291.

Research Laboratories and Programs

The Mechanical Engineering Department is organized into seven areas that collectively capture the broad range of interests and activities within it. These areas are:

  • Mechanics: Modeling, Experimentation, and Computation (MMEC)

Design, Manufacturing, and Product Development

Controls, instrumentation, and robotics, energy science and engineering, ocean science and engineering, bioengineering, nano/micro science and technology.

The educational opportunities offered to students in mechanical engineering are enhanced by the availability of a wide variety of research laboratories and programs, and well-equipped shops and computer facilities.

The department provides many opportunities for undergraduates to establish a close relationship with faculty members and their research groups. Students interested in project work are encouraged to consult their faculty advisor or approach other members of the faculty.

Many members of the Department of Mechanical Engineering participate in interdepartmental or school-wide research activities. These include the Center for Biomedical Engineering, Center for Computational Science and Engineering, Computational and Systems Biology Program, Computer Science and Artificial Intelligence Laboratory, Institute for Soldier Nanotechnologies, Laboratory for Manufacturing and Productivity, Materials Research Science and Engineering Center, MIT Energy Initiative, Operations Research Center, Program in Polymers and Soft Matter, and Sea Grant College Program. Detailed information about many of these can be found under Research and Study and Interdisciplinary Graduate Programs. The department also hosts a number of industrial consortia, which support some laboratories and research projects. Research in the department is supported, in addition, by a broad range of federal agencies and foundations.

A partial list of departmental laboratories, listed according to the seven core areas of research, follows.

Mechanics: Modeling, Experimentation, and Computation

Amp mechanical behavior of materials laboratory.

Mechanisms of deformation and fracture processes in engineering materials.

Center for Nonlinear Science

Interdisciplinary research into nonlinear phenomena. Incorporates the Nonlinear Dynamical Systems Lab (modeling, simulation, analysis), Nonlinear Dynamics Lab (experiments), and Nonlinear Systems Lab.

Composite Materials and Nondestructive Evaluation Laboratory

Development of quantitative nondestructive evaluation characterizations which are directly correlatable with the mechanical properties of materials and structures.

Finite Element Research Group

Computational procedures for the solution of problems in structural, solid, and fluid mechanics.

Hatsopoulos Microfluids Laboratory

Fundamental research on the behavior of complex fluid systems at microscopic scales, and associated engineering applications.

Auto-ID Laboratory

Creation of the "Internet of Things" using radio frequency identification and wireless sensor networks, and of a global system for tracking goods using a single numbering system called the Electronic Product Code.

Computer-Aided Design Laboratory

Advancing the state of the art in design methodology and computer-aided design methods.

An interdepartmental laboratory in the School of Engineering. Polymer microfabrication for microfluidic devices, chemical mechanical planarization for the semiconductor industry, precision macro- and micro-scale devices, and novel metrology methods for micro-scale devices. Small-scale fuel cells design, photovoltaic material and process research, and manufacture of photovoltaic panels. Identification technologies such as RFID, wireless sensors, and complex systems. Methods to integrate data and models across global networks. Factory-level manufacturing systems design and control, and supply chain design and management. Environmentally benign manufacturing.

Martin Center for Engineering Design

Design methodology, design of integrated electrical-mechanical systems, prototype development, advanced computer-aided design techniques.

Park Center for Complex Systems

Research to understand complexity, educating students and scholars on complexity, designing complex systems for the benefit of humankind, and disseminating knowledge on complexity to the world at large.

Precision Engineering Laboratory

Fundamental and applied research on all aspects of the design, manufacture, and control of high precision machines ranging from manufacturing machines to precision consumer products.

Precision Systems Design and Manufacturing Laboratory

Modeling, design, and manufacturing methods for nanopositioning equipment, carbon nanotube-based mechanisms and machines, and compliant mechanisms.

d'Arbeloff Laboratory for Information Systems and Technology

Research on mechatronics, home and health automation, interface between hardware and software, and development of sensing technologies.

Field and Space Robotics Laboratory

Fundamental physics of robotic systems for unstructured environments. Development, design, and prototyping of control and planning algorithms for robotic applications, including space exploration, rough terrains, sea systems, and medical devices and systems.

Nonlinear Systems Laboratory

Analysis and control of nonlinear physical systems with emphasis on adaptation and learning in robots.

Center for Energy and Propulsion Research

Innovative science and technology for a sustainable energy future in a carbon-constrained world. Fundamental and applied research in energy conversion and transportation, with applications to low-carbon efficient energy and propulsion systems. Includes several research groups:

  • Electrochemical Energy Laboratory . Engineering of advanced materials for lithium batteries, proton exchange membrane and solid oxide fuel cells, and air battery and fuel cell hybrids.
  • Reacting Gas Dynamics Laboratory . Fluid flow, chemical reaction, and combustion phenomena associated with energy conversion in propulsion systems, power generation, industrial processes, and fires.
  • Sloan Automotive Laboratory . Processes and technology that control the performance, efficiency, and environmental impact of internal combustion engines, their lubrication, and fuel requirements.

Cryogenic Engineering Laboratory

Application of thermodynamics, heat transfer, and mechanical design to cryogenic processes and instrumentation and the operation of a liquid helium facility.

Rohsenow Kendall Heat Transfer Laboratory

Fundamental research in microscale/nanoscale transport, convection, laser/material interaction, and high heat fluxes; applied research in water purification, thermoelectric devices, energy-efficient buildings, and thermal management of electronics.

Center for Ocean Engineering

Provides an enduring ocean engineering identity, giving visibility to the outside world of MIT's commitment to the oceans, and serves as the focus point of ocean-related research at the Institute. Supports the research activities of the MIT-WHOI Joint Program in Oceanographic Engineering and the Naval Construction and Engineering Program. Encompasses the activities of the following research groups and laboratories:

  • Autonomous Marine Sensing Lab . Distributed ocean sensing concepts for oceanographic science, national defense, and coastal management and protection. Oceanographic sensing and modeling, sonar system technology, computational underwater acoustics, and marine robotics and communication networking.
  • Design Lab . Ship design, offshore structure design, marine robotics, geometric and solid modeling, advanced manufacturing, and shipbuilding. Includes the Center for Environmental Sensing and Modeling.
  • Experimental Hydrodynamics Lab . Advanced surface ship, offshore platform, and underwater vehicle design. Development of non-invasive flow measurement and visualization methods.
  • Impact and Crashworthiness Laboratory . Industry-oriented fracture testing and prediction technology of advanced high-strength steel sheets for automotive and shipbuilding applications. Includes both quasi-static and high strain rate response and effect of loading history on fracture.
  • Experimental and Nonlinear Dynamics Lab . Laboratory experiments to obtain insight into all manner of dynamical phenomena, from micro-scale diffusive processes to global-scale oceanic wave fields. Field studies for ocean-related problems.
  • Laboratory for Ship and Platform Flows . Modeling of free surface flows past conventional and high-speed vessels and estimation of their resistance and seakeeping in deep and shallow waters. Analytical and computational techniques.
  • Laboratory for Undersea Remote Sensing . Ocean exploration, undersea remote sensing of marine life and geophysical phenomena, wave propagation and scattering theory in remote sensing, statistical estimation and information theory, acoustics and seismics, Europa exploration.
  • Marine Hydrodynamics Laboratory (Propeller Tunnel) . A variable-pressure recirculating water tunnel capable of speeds up to 10 m/s. Experiments are performed using state-of-the-art measurement techniques and instrumentation.
  • Multidisciplinary Ocean Dynamics and Engineering Laboratory . Complex physical and interdisciplinary oceanic dynamics and processes. Mathematical model and computation methods for ocean predictions, dynamical diagnostics, and for data assimilation and data-model comparisons.
  • Ocean Engineering Testing Tank . The tank is 108 feet long, 8.5 feet wide, with an average depth of 4.5 feet. The wave generator can generate harmonic or random waves. The tank also houses several laser flow visualization systems.
  • Vortical Flow Research Laboratory . Advanced capabilities for simulation of complex vertical flows. Powerful computer workstations and LINUX clusters, computer-video image conversion, and state-of-the-art flow simulation animation technologies.
  • MIT Sea Grant AUV Lab . Dedicated to autonomous underwater vehicles (AUVs), the lab is a leading developer of advanced unmanned marine robots, with applications in oceanography, environmental monitoring, and underwater resource studies. It engages in instrumentation and algorithm development for underwater vehicles performing navigation- and information-intensive tasks. Various vehicle platforms, and fabrication tools and materials are available.

Bioinstrumentation Laboratory

Utilization of biology, optics, mechanics, mathematics, electronics, and chemistry to develop innovative instruments for the analysis of biological processes and new devices for the treatment and diagnosis of disease.

Human and Machine Haptics

Interdisciplinary studies aimed at understanding human haptics, developing machine haptics, and enhancing human-machine interactions in virtual reality and teleoperator systems.

Laboratory for Biomechanics of Cells and Biomolecules

Development of new instruments for the measurement of mechanical properties on the scale of a single cell or single molecule to better understand the interactions between biology and mechanics.

Newman Laboratory for Biomechanics and Human Rehabilitation

Research on bioinstrumentation, neuromuscular control, and technology for diagnosis and remediation of disabilities.

Pappalardo Laboratory for Micro/Nano Engineering

Creation of new engineering knowledge and products on the nano and micro scale through multidomain, multidisciplinary, and multiscale research.

Faculty and Teaching Staff

A. John Hart, PhD

Professor of Mechanical Engineering

Head, Department of Mechanical Engineering

Rohan Abeyaratne, PhD

Quentin Berg (1937) Professor of Mechanical Engineering

Triantaphyllos R. Akylas, PhD

Lallit Anand, PhD

Warren and Townley Rohsenow Professor

H. Harry Asada, PhD

Ford Foundation Professor of Engineering

George Barbastathis, PhD

Klaus-Jürgen Bathe, ScD, PhD

Professor Post-Tenure of Mechanical Engineering

Mark Bathe, PhD

Professor of Biological Engineering

(On leave, spring)

John G. Brisson II, PhD

Tonio Buonassisi, PhD

Professor of Mechanical Engineering and Manufacturing

Gang Chen, PhD

Carl Richard Soderberg Professor in Power Engineering

Wai K. Cheng, PhD

Chryssostomos Chryssostomidis, PhD

Henry L. Doherty Professor in Ocean Science and Engineering

Professor Post-Tenure of Mechanical and Ocean Engineering

Jung-Hoon Chun, PhD

Martin L. Culpepper, PhD

Domitilla Del Vecchio, PhD

George N. Hatsopoulos (1949) Faculty Fellowship in Interdisciplinary Research

Daniel Frey, PhD

(On leave, fall)

Ahmed F. Ghoniem, PhD

Ronald C. Crane (1972) Professor

Lorna Gibson, PhD

Matoula S. Salapatas Professor Post-Tenure of Materials Science and Engineering

Leon R. Glicksman, PhD

Professor Post-Tenure of Building Technology

Stephen C. Graves, PhD

Abraham J. Siegel Professor of Management

Professor of Operations Management and Leaders for Global Operations

Member, Institute for Data, Systems, and Society

Linda G. Griffith, PhD

School of Engineering Professor of Teaching Innovation

Timothy G. Gutowski, PhD

Nicolas Hadjiconstantinou, PhD

David E. Hardt, PhD

Ralph E. and Eloise F. Cross Professor in Manufacturing

Douglas Hart, PhD

Asegun Henry, PhD

Robert N. Noyce Career Development Professor

Neville Hogan, PhD

Sun Jae Professor in Mechanical Engineering

Professor of Brain and Cognitive Sciences

Anette E. Hosoi, PhD

Neil and Jane Pappalardo Professor

Professor of Mathematics

Ian Hunter, PhD

George N. Hatsopoulos Professor in Thermodynamics

Roger Dale Kamm, PhD

Cecil H. Green Distinguished Professor Post-Tenure

Professor Post-Tenure of Biological Engineering

Kenneth N. Kamrin, PhD

Rohit N. Karnik, PhD

Tata Professor

Sang-Gook Kim, PhD

Sangbae Kim, PhD

Robert Langer, ScD

David H. Koch (1962) Institute Professor

Professor of Chemical Engineering

Affiliate Faculty, Institute for Medical Engineering and Science

Steven B. Leeb, PhD

Emanuel Landsman (1958) Professor

Professor of Electrical Engineering

John J. Leonard, PhD

Samuel C. Collins Professor

Professor of Mechanical and Ocean Engineering

Pierre F. J. Lermusiaux, PhD

Nam Pyo Suh Professor

John H. Lienhard, PhD

Abdul Latif Jameel Professor of Water and Food

Seth Lloyd, PhD

Nicholas Makris, PhD

Scott R. Manalis, PhD

David H. Koch Professor in Engineering

Associate Head, Department of Biological Engineering

Gareth H. McKinley, PhD

David M. Parks, PhD

Anthony T. Patera, PhD

Nicholas M. Patrikalakis, PhD

Kawasaki Professor of Engineering

Thomas Peacock, PhD

Emanuel Michael Sachs, PhD

Themistoklis Sapsis, PhD

Sanjay E. Sarma, PhD

Fred Fort Flowers (1941) and Daniel Fort Flowers (1941) Professor

Henrik Schmidt, PhD

Paul D. Sclavounos, PhD

Professor of Mechanical Engineering and Naval Architecture

Warren Seering, PhD

Weber-Shaughness Professor

Yang Shao-Horn, PhD

JR East Professor of Engineering

Professor of Materials Science and Engineering

Alexander H. Slocum, PhD

Walter M. May and A. Hazel May Professor of Mechanical Engineering

Jean-Jacques E. Slotine, PhD

Professor of Information Sciences

Peter T. C. So, PhD

Alexandra H. Techet, PhD

Russell L. Tedrake, PhD

Toyota Professor

Professor of Computer Science and Engineering

Professor of Aeronautics and Astronautics

Michael S. Triantafyllou, ScD

Henry L. and Grace Doherty Professor in Ocean Science and Engineering

David L. Trumper, PhD

J. Kim Vandiver, PhD

Kripa K. Varanasi, PhD

David Robert Wallace, PhD

Evelyn N. Wang, PhD

Ford Professor of Engineering

Tomasz Wierzbicki, PhD

Professor Post-Tenure of Applied Mechanics

James H. Williams Jr, PhD

Professor Post-Tenure of Teaching Excellence

Maria Yang, PhD

Gail E. Kendall Professor of Mechanical Engineering

Ioannis V. Yannas, PhD

Professor of Polymer Science and Engineering

Member, Health Sciences and Technology Faculty

Kamal Youcef-Toumi, ScD

Dick K. P. Yue, PhD

Philip J. Solondz (1948) Professor of Engineering

Xuanhe Zhao, PhD

Professor of Civil and Environmental Engineering

Associate Professors

Irmgard Bischofberger, PhD

Class of 1942 Career Development Chair

Associate Professor of Mechanical Engineering

Cullen R. Buie, PhD

Tal Cohen, PhD

Associate Professor of Civil and Environmental Engineering

Betar Gallant, PhD

Ming Guo, PhD

Jeehwan Kim, PhD

Associate Professor of Materials Science and Engineering

Mathias Kolle, PhD

Stefanie Mueller, PhD

TIBCO Founders Professor

Associate Professor of Electrical Engineering and Computer Science

Ellen Roche, PhD

Latham Family Career Development Professor

Core Faculty, Institute for Medical Engineering and Science

Giovanni Traverso, PhD

Amos Winter, PhD

Assistant Professors

Faez Ahmed, PhD

Assistant Professor of Mechanical Engineering

Navid Azizan, PhD

Edgerton Career Development Professor

Kaitlyn P. Becker, PhD

Henry L. and Grace Doherty Professorship in Ocean Science and Engineering

Sili Deng, PhD

Class of 1954 Career Development Professor

Ashwin Gopinath, PhD

Carlos Portela, PhD

Ritu Raman, PhD

Brit (1961) and Alex (1949) d’Arbeloff Career Development Professor

Vivishek Sudhir, PhD

Loza Tadesse, PhD

Wim van Rees, PhD

Sherrie Wang, PhD

Professors of the Practice

Richard M. Wiesman, PhD

Professor of the Practice of Mechanical Engineering

Associate Professors of the Practice

Douglas Jonart, PhD

Associate Professor of the Practice of Naval Construction and Engineering

Visiting Professors

Nicholas Xuanlai Fang, PhD

Visiting Professor of Mechanical Engineering

Visiting Associate Professors

Alberto Rodriguez, PhD

Visiting Associate Professor of Mechanical Engineering

Senior Lecturers

Daniel Braunstein, PhD

Senior Lecturer in Mechanical Engineering

Stephen Fantone, PhD

Franz Hover, PhD

Barbara Hughey, PhD

Raymond S. McCord, MS, Eng

William Plummer, PhD

Amy Smith, MS, MEng

Simona Socrate, PhD

Abbott Weiss, PhD

Dawn Wendell, PhD

Kevin Cedrone, PhD

Lecturer in Mechanical Engineering

Christina Chase, BA

Harrison Chin, PhD

Benita Comeau, PhD

Kevin DiGenova, PhD

Julio Guerrero, PhD

Victor Hung, BS

Bavand Keshavarz, PhD

John Liu, PhD

Peter Nielsen, PhD

James Douglass Penn, PhD

Nathan Phipps, PhD

Robert Podoloff, PhD

Joshua Ramos, PhD

Michael Wardlaw, MS

Instructors

Rachel Mok, PhD

Instructor of Mechanical Engineering

Technical Instructors

Stephen G. Banzaert, MS

Technical Instructor of Mechanical Engineering

Daniel Gilbert, BA

Pierce Hayward, MS

Tasker Smith, BA

Research Staff

Senior research engineers.

Tian Tian, PhD

Senior Research Engineer of Mechanical Engineering

Senior Research Scientists

Anuradha M. Annaswamy, PhD

Senior Research Scientist of Mechanical Engineering

Lynette A. Jones, PhD

Yuming Liu, PhD

Principal Research Scientists

Brian Anthony, PhD

Principal Research Scientist of Mechanical Engineering

Michael Richard Benjamin, PhD

Svetlana V. Boriskina, PhD

H. Igo Krebs, PhD

Research Associates

Chris Mirabito, PhD

Research Associate of Mechanical Engineering

Yi J. Wang, PhD

Research Engineers

Kelli Hendrickson, ScD

Research Engineer of Mechanical Engineering

Benjamin Judge, PhD

Amanda Stack, PhD

Research Scientists

Moises Alencastre Miranda, PhD

Research Scientist of Mechanical Engineering

Susan Elizabeth Amrose, PhD

Rahul Bhattacharyya, PhD

Michael Bono Jr., PhD

Bachir El Fil, PhD

Micha Feigin-Almon, PhD

Richard Ribon Fletcher, PhD

Kiarash Gordiz, PhD

Patrick Haley, PhD

Nevan Clancy Hanumara, PhD

Stephen Ho, PhD

Nora C. Hogan, PhD

Po-Hsun Huang, PhD

Miguel Jimenez, PhD

Jeon Woong Kang, PhD

George E. Karniadakis, PhD

Hyunseok Kim, PhD

Suhin Kim, PhD

Aaron H. Persad, PhD

Mehdi Pishahang, PhD

Themistocles L. Resvanis, PhD

Santosh Shanbhogue, PhD

Dajiang Suo, PhD

Grgur Tokic, PhD

Jianan Zhang, PhD

Lenan Zhang, PhD

Professors Emeriti

Arthur B. Baggeroer, ScD

Professor Emeritus of Mechanical and Ocean Engineering

Professor Emeritus of Electrical Engineering

Mary C. Boyce, PhD

Ford Foundation Professor Emerita of Engineering

Professor Emerita of Mechanical Engineering

C. Forbes Dewey Jr, PhD

Professor Emeritus of Mechanical Engineering

Professor Emeritus of Biological Engineering

Steven Dubowsky, PhD

Professor Emeritus of Aeronautics and Astronautics

David C. Gossard, PhD

Alan J. Grodzinsky, ScD

John B. Heywood, ScD, PhD

Sun Jae Professor Emeritus of Mechanical Engineering

Henry S. Marcus, DBA

Professor Emeritus of Marine Systems

Chiang C. Mei, PhD

Ford Professor Emeritus of Engineering

Professor Emeritus of Civil and Environmental Engineering

Borivoje Mikić, ScD

John Nicholas Newman, ScD

Professor Emeritus of Mechanical Engineering and Naval Architecture

Carl R. Peterson, ScD

Derek Rowell, PhD

Thomas B. Sheridan, ScD

Professor Emeritus of Engineering and Applied Psychology

Nam P. Suh, PhD

Ralph E. and Eloise F. Cross Professor Emeritus

Neil E. Todreas, PhD

Professor Emeritus of Nuclear Science and Engineering

Gerald L. Wilson, PhD

Vannevar Bush Professor Emeritus

First-Year Introductory Subjects

2.00a designing for the future: earth, sea, and space.

Prereq: Calculus I (GIR) and Physics I (GIR) U (Spring) 3-3-3 units

Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. Introduces core engineering themes, principles, and modes of thinking. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Includes exercises in written and oral communication and team building. Examples of projects include surveying a lake for millfoil, from a remote controlled aircraft, and then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots. Enrollment limited; preference to freshmen.

2.00B Toy Product Design

Prereq: None U (Spring) 3-5-1 units

Provides students with an overview of design for entertainment and play, as well as opportunities in creative product design and community service. Students develop ideas for new toys that serve clients in the community, and work in teams with local sponsors and with experienced mentors on a themed toy design project. Students enhance creativity and experience fundamental aspects of the product development process, including determining customer needs, brainstorming, estimation, sketching, sketch modeling, concept development, design aesthetics, detailed design, and prototyping. Includes written, visual, and oral communication. Enrollment limited; preference to freshmen.

D. R. Wallace

2.00C[J] Design for Complex Environmental Issues

Same subject as 1.016[J] , EC.746[J] Prereq: None U (Spring) 3-1-5 units

Working in small teams with real clients, students develop solutions related to the year's Terrascope topic. They have significant autonomy as they follow a full engineering design cycle from client profile through increasingly sophisticated prototypes to final product. Provides opportunities to acquire skills with power tools, workshop practice, design, product testing, and teamwork. Focuses on sustainability and appropriate technology that matches the client's specific situation and constraints. Products are exhibited in the public Bazaar of Ideas and evaluated by an expert panel. Class taught in collaboration with D-Lab and Beaver Works. Limited to first-year students. Open to students outside of Terrascope.

A. W. Epstein, J. Grimm, S. L. Hsu

Core Undergraduate Subjects

2.00 introduction to design.

Prereq: None U (Fall; second half of term) 2-2-2 units

Project-based introduction to product development and engineering design. Emphasizes key elements of the design process, including defining design problems, generating ideas, and building solutions. Presents a range of design techniques to help students think about, evaluate, and communicate designs, from sketching to physical prototyping, as well as other types of modeling. Students work both individually and in teams.

2.000 Explorations in Mechanical Engineering

Prereq: None U (Spring) 2-0-0 units

Broad introduction to the various aspects of mechanical engineering at MIT, including mechanics, design, controls, energy, ocean engineering, bioengineering, and micro/nano engineering through a variety of experiences, including discussions led by faculty, students, and industry experts. Reviews research opportunities and undergraduate major options in Course 2 as well as a variety of career paths pursued by alumni. Subject can count toward the 6-unit discovery-focused credit limit for first year students.

2.001 Mechanics and Materials I

Prereq: Physics I (GIR) ; Coreq: 2.087 or 18.03 U (Fall, Spring) 4-1-7 units. REST

Introduction to statics and the mechanics of deformable solids. Emphasis on the three basic principles of equilibrium, geometric compatibility, and material behavior. Stress and its relation to force and moment; strain and its relation to displacement; linear elasticity with thermal expansion. Failure modes. Application to simple engineering structures such as rods, shafts, beams, and trusses. Application to biomechanics of natural materials and structures.

S. Socrate, M. Culpepper, D. Parks, K. Kamrin

2.002 Mechanics and Materials II

Prereq: Chemistry (GIR) and 2.001 U (Spring) 3-3-6 units

Introduces mechanical behavior of engineering materials, and the use of materials in mechanical design. Emphasizes the fundamentals of mechanical behavior of materials, as well as design with materials. Major topics: elasticity, plasticity, limit analysis, fatigue, fracture, and creep. Materials selection. Laboratory experiments involving projects related to materials in mechanical design. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

L. Anand, K. Kamrin, P. Reis

2.003[J] Dynamics and Control I

Same subject as 1.053[J] Prereq: Physics II (GIR) ; Coreq: 2.087 or 18.03 U (Fall, Spring) 4-1-7 units. REST

Introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Kinematics. Force-momentum formulation for systems of particles and rigid bodies in planar motion. Work-energy concepts. Virtual displacements and virtual work. Lagrange's equations for systems of particles and rigid bodies in planar motion. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear multi-degree of freedom models of mechanical systems; matrix eigenvalue problems.

J. K. Vandiver, N. C. Makris, N. M. Patrikalakis, T. Peacock, D. Gossard, K. Turitsyn

2.004 Dynamics and Control II

Prereq: Physics II (GIR) and 2.003[J] U (Fall, Spring) 4-2-6 units

Modeling, analysis, and control of dynamic systems. System modeling: lumped parameter models of mechanical, electrical, and electromechanical systems; interconnection laws; actuators and sensors. Linear systems theory: linear algebra; Laplace transform; transfer functions, time response and frequency response, poles and zeros; block diagrams; solutions via analytical and numerical techniques; stability. Introduction to feedback control: closed-loop response; PID compensation; steady-state characteristics, root-locus design concepts, frequency-domain design concepts. Laboratory experiments and control design projects. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

D. Del Vecchio, D. Trumper

2.005 Thermal-Fluids Engineering I

Prereq: ( Physics II (GIR) , 18.03 , and ( 2.086 , 6.100B , or 18.06 )) or permission of instructor U (Fall, Spring) 5-0-7 units

Integrated development of the fundamental principles of thermodynamics, fluid mechanics, and heat transfer, with applications. Focuses on the first and second laws of thermodynamics, mass conservation, and momentum conservation, for both closed and open systems. Entropy generation and its influence on the performance of engineering systems. Introduction to dimensionless numbers. Introduction to heat transfer: conduction, convection, and radiation. Steady-state and transient conduction. Finned surfaces. The heat equation and the lumped capacitance model. Coupled and uncoupled fluid models. Hydrostatics. Inviscid flow analysis and Bernoulli equation. Navier-Stokes equation and its solutions. Viscous internal flows, head losses, and turbulence. Introduction to pipe flows and Moody chart.

2.006 Thermal-Fluids Engineering II

Prereq: 2.005 U (Fall, Spring) 5-0-7 units

Focuses on the application of the principles of thermodynamics, heat transfer, and fluid mechanics to the design and analysis of engineering systems. Dimensional analysis, similarity, and modeling. Pipe systems: major and minor losses. Laminar and turbulent boundary layers. Boundary layer separation, lift and drag on objects. Heat transfer associated with laminar and turbulent flow of fluids in free and forced convection in channels and over surfaces. Pure substance model. Heat transfer in boiling and condensation. Thermodynamics and fluid mechanics of steady flow components of thermodynamic plants. Heat exchanger design. Power cycles and refrigeration plants. Design of thermodynamic plants. Analyses for alternative energy systems. Multi-mode heat transfer and fluid flow in thermodynamic plants.

 R. Karnik, B. Gallant

2.007 Design and Manufacturing I

Prereq: 2.001 and 2.670 ; Coreq: 2.086 U (Spring) 3-4-5 units

Develops students' competence and self-confidence as design engineers. Emphasis on the creative design process bolstered by application of physical laws. Instruction on how to complete projects on schedule and within budget. Robustness and manufacturability are emphasized. Subject relies on active learning via a major design-and-build project. Lecture topics include idea generation, estimation, concept selection, visual thinking, computer-aided design (CAD), mechanism design, machine elements, basic electronics, technical communication, and ethics. Lab fee. Limited enrollment. Pre-registration required for lab assignment; special sections by lottery only.

S. Kim, A. Winter

2.008 Design and Manufacturing II

Prereq: 2.007 ; or Coreq: 2.017[J] and ( 2.005 or 2.051) U (Fall, Spring) 3-3-6 units. Partial Lab

Integration of design, engineering, and management disciplines and practices for analysis and design of manufacturing enterprises. Emphasis is on the physics and stochastic nature of manufacturing processes and systems, and their effects on quality, rate, cost, and flexibility. Topics include process physics and control, design for manufacturing, and manufacturing systems. Group project requires design and fabrication of parts using mass-production and assembly methods to produce a product in quantity. Six units may be applied to the General Institute Lab Requirement. Satisfies 6 units of Institute Laboratory credit. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

J.-H. Chun, J. Hart, S.G. Kim, J. Liu, W. Seering, D. Wendell

2.009 The Product Engineering Process

Prereq: 2.001 , 2.003[J] , ( 2.005 or 2.051), and ( 2.00B , 2.670 , or 2.678 ) U (Fall) 3-3-9 units

Students develop an understanding of product development phases and experience working in teams to design and construct high-quality product prototypes. Design process learned is placed into a broader development context. Primary goals are to improve ability to reason about design alternatives and apply modeling techniques appropriate for different development phases; understand how to gather and process customer information and transform it into engineering specifications; and use teamwork to resolve the challenges in designing and building a substantive product prototype. Instruction and practice in oral communication provided. Enrollment may be limited due to laboratory capacity; preference to Course 2 seniors.

2.013 Engineering Systems Design

Subject meets with 2.733 Prereq: ( 2.001 , 2.003[J] , ( 2.005 or 2.051), and ( 2.00B , 2.670 , or 2.678 )) or permission of instructor U (Fall) 0-6-6 units

Focuses on the design of engineering systems to satisfy stated performance, stability, and/or control requirements. Emphasizes individual initiative, application of fundamental principles, and the compromises inherent in the engineering design process. Culminates in the design of an engineering system, typically a vehicle or other complex system. Includes instruction and practice in written and oral communication through team presentations, design reviews, and written reports. Students taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

2.014 Engineering Systems Development

Subject meets with 2.734 Prereq: ( 2.001 , 2.003[J] , ( 2.005 or 2.051), and ( 2.00B , 2.670 , or 2.678 )) or permission of instructor U (Spring) 0-6-6 units Can be repeated for credit.

Focuses on implementation and operation of engineering systems. Emphasizes system integration and performance verification using methods of experimental inquiry. Students refine their subsystem designs and the fabrication of working prototypes. Includes experimental analysis of subsystem performance and comparison with physical models of performance and with design goals. Component integration into the full system, with detailed analysis and operation of the complete vehicle in the laboratory and in the field. Includes written and oral reports. Students carry out formal reviews of the overall system design. Instruction and practice in oral and written communication provided. Students taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

2.016 Hydrodynamics

Prereq: 2.005 U (Fall) 3-0-9 units

Covers fundamental principles of fluid mechanics and applications to practical ocean engineering problems. Basic geophysical fluid mechanics, including the effects of salinity, temperature, and density; heat balance in the ocean; large scale flows. Hydrostatics. Linear free surface waves, wave forces on floating and submerged structures. Added mass, lift and drag forces on submerged bodies. Includes final project on current research topics in marine hydrodynamics.

A. H. Techet

2.017[J] Design of Electromechanical Robotic Systems

Same subject as 1.015[J] Prereq: 2.003[J] , 2.016 , and 2.678 ; Coreq: 2.671 U (Spring) 3-3-6 units. Partial Lab

Design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Basic statistics, linear systems, Fourier transforms, random processes, spectra and extreme events with applications in design. Lectures on ethics in engineering practice included. Instruction and practice in oral and written communication provided. Satisfies 6 units of Institute Laboratory credit. Enrollment may be limited due to laboratory capacity.

M. Triantafyllou, M. Sacarny

2.019 Design of Ocean Systems

Prereq: 2.001 , 2.003[J] , and ( 2.005 or 2.016 ) U (Spring) 3-3-6 units

Complete cycle of designing an ocean system using computational design tools for the conceptual and preliminary design stages. Team projects assigned, with each student responsible for a specific subsystem. Lectures cover hydrodynamics; structures; power and thermal aspects of ocean vehicles, environment, materials, and construction for ocean use; generation and evaluation of design alternatives. Focus on innovative design concepts chosen from high-speed ships, submersibles, autonomous vehicles, and floating and submerged deep-water offshore platforms. Lectures on ethics in engineering practice included. Instruction and practice in oral and written communication provided. Enrollment may be limited due to laboratory capacity; preference to Course 2 seniors.

C. Chryssostomidis, M. S. Triantafyllou

2.086 Numerical Computation for Mechanical Engineers

Prereq: Calculus II (GIR) and Physics I (GIR) ; Coreq: 2.087 or 18.03 U (Fall, Spring) 2-2-8 units. REST

Covers elementary programming concepts, including variable types, data structures, and flow control. Provides an introduction to linear algebra and probability. Numerical methods relevant to MechE, including approximation (interpolation, least squares, and statistical regression), integration, solution of linear and nonlinear equations, and ordinary differential equations. Presents deterministic and probabilistic approaches. Uses examples from MechE, particularly from robotics, dynamics, and structural analysis. Assignments require MATLAB programming. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

D. Frey, F. Hover, N. Hadjiconstantinou,

2.087 Engineering Mathematics: Linear Algebra and ODEs

Prereq: Calculus II (GIR) and Physics I (GIR) U (Fall; first half of term) Not offered regularly; consult department 2-0-4 units

Introduction to linear algebra and ordinary differential equations (ODEs), including general numerical approaches to solving systems of equations. Linear systems of equations, existence and uniqueness of solutions, Gaussian elimination. Initial value problems, 1st and 2nd order systems, forward and backward Euler, RK4. Eigenproblems, eigenvalues and eigenvectors, including complex numbers, functions, vectors and matrices.

A. Hosoi, T. Peacock

Dynamics and Acoustics

2.032 dynamics.

Prereq: 2.003[J] G (Fall) 4-0-8 units

Review of momentum principles. Hamilton's principle and Lagrange's equations. Three-dimensional kinematics and dynamics of rigid bodies. Study of steady motions and small deviations therefrom, gyroscopic effects, causes of instability. Free and forced vibrations of lumped-parameter and continuous systems. Nonlinear oscillations and the phase plane. Nonholonomic systems. Introduction to wave propagation in continuous systems.

T. R. Akylas, T. Peacock, N. Hadjiconstantinou

2.033[J] Nonlinear Dynamics and Turbulence

Same subject as 1.686[J] , 18.358[J] Subject meets with 1.068 Prereq: 1.060A Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Spring) 3-2-7 units

See description under subject 1.686[J] .

L. Bourouiba

2.034[J] Nonlinear Dynamics and Waves

Same subject as 1.685[J] , 18.377[J] Prereq: Permission of instructor Acad Year 2023-2024: G (Spring) Acad Year 2024-2025: Not offered 3-0-9 units

A unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems. Nonlinear free and forced vibrations; nonlinear resonances; self-excited oscillations; lock-in phenomena. Nonlinear dispersive and nondispersive waves; resonant wave interactions; propagation of wave pulses and nonlinear Schrodinger equation. Nonlinear long waves and breaking; theory of characteristics; the Korteweg-de Vries equation; solitons and solitary wave interactions. Stability of shear flows. Some topics and applications may vary from year to year.

R. R. Rosales

2.036[J] Nonlinear Dynamics and Chaos

Same subject as 18.385[J] Prereq: 18.03 or 18.032 Acad Year 2023-2024: G (Spring) Acad Year 2024-2025: Not offered 3-0-9 units

See description under subject 18.385[J] .

2.050[J] Nonlinear Dynamics: Chaos

Same subject as 12.006[J] , 18.353[J] Prereq: Physics II (GIR) and ( 18.03 or 18.032 ) U (Fall) 3-0-9 units

See description under subject 12.006[J] .

2.060[J] Structural Dynamics

Same subject as 1.581[J] , 16.221[J] Subject meets with 1.058 Prereq: 18.03 or permission of instructor Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Fall) 3-1-8 units

See description under subject 1.581[J] .

2.062[J] Wave Propagation

Same subject as 1.138[J] , 18.376[J] Prereq: 2.003[J] and 18.075 G (Spring) 3-0-9 units

Theoretical concepts and analysis of wave problems in science and engineering with examples chosen from elasticity, acoustics, geophysics, hydrodynamics, blood flow, nondestructive evaluation, and other applications. Progressive waves, group velocity and dispersion, energy density and transport. Reflection, refraction and transmission of plane waves by an interface. Mode conversion in elastic waves. Rayleigh waves. Waves due to a moving load. Scattering by a two-dimensional obstacle. Reciprocity theorems. Parabolic approximation. Waves on the sea surface. Capillary-gravity waves. Wave resistance. Radiation of surface waves. Internal waves in stratified fluids. Waves in rotating media. Waves in random media.

T. R. Akylas, R. R. Rosales

2.065 Acoustics and Sensing

Subject meets with 2.066 Prereq: 2.003[J] , 6.3000 , 8.03 , or 16.003 U (Spring) 3-0-9 units

Introduces the fundamental concepts of acoustics and sensing with waves. Provides a unified theoretical approach to the physics of image formation through scattering and wave propagation in sensing. The linear and nonlinear acoustic wave equation, sources of sound, including musical instruments. Reflection, refraction, transmission and absorption. Bearing and range estimation by sensor array processing, beamforming, matched filtering, and focusing. Diffraction, bandwidth, ambient noise and reverberation limitations. Scattering from objects, surfaces and volumes by Green's Theorem. Forward scatter, shadows, Babinet's principle, extinction and attenuation. Ray tracing and waveguides in remote sensing. Applications to acoustic, radar, seismic, thermal and optical sensing and exploration. Students taking the graduate version complete additional assignments.

N. C. Makris

2.066 Acoustics and Sensing

Subject meets with 2.065 Prereq: 2.003[J] , 6.3000 , 8.03 , 16.003 , or permission of instructor G (Spring) 3-0-9 units

Introduces the fundamental concepts of acoustics and sensing with waves. Provides a unified theoretical approach to the physics of image formation through scattering and wave propagation in sensing. The linear and nonlinear acoustic wave equation, sources of sound, including musical instruments. Reflection, refraction, transmission and absorption. Bearing and range estimation by sensor array processing, beamforming, matched filtering, and focusing. Diffraction, bandwidth, ambient noise and reverberation limitations. Scattering from objects, surfaces and volumes by Green's Theorem. Forward scatter, shadows, Babinet's principle, extinction and attenuation. Ray tracing and waveguides in remote sensing. Applications to acoustic, radar, seismic, thermal and optical sensing and exploration. Students taking the graduate version of the subject complete additional assignments.

Solid Mechanics and Materials

2.071 mechanics of solid materials.

Prereq: 2.002 G (Spring) 4-0-8 units

Fundamentals of solid mechanics applied to the mechanical behavior of engineering materials. Kinematics of deformation, stress, and balance principles. Isotropic linear elasticity and isotropic linear thermal elasticity. Variational and energy methods. Linear viscoelasticity. Small-strain elastic-plastic deformation. Mechanics of large deformation; nonlinear hyperelastic material behavior. Foundations and methods of deformable-solid mechanics, including relevant applications. Provides base for further study and specialization within solid mechanics, including continuum mechanics, computational mechanics (e.g., finite-element methods), plasticity, fracture mechanics, structural mechanics, and nonlinear behavior of materials.

L. Anand, D. M. Parks

2.072 Mechanics of Continuous Media

Prereq: 2.071 Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Fall) 3-0-9 units

Principles and applications of continuum mechanics. Kinematics of deformation. Thermomechanical conservation laws. Stress and strain measures. Constitutive equations including some examples of their microscopic basis. Solution of some basic problems for various materials as relevant in materials science, fluid dynamics, and structural analysis. Inherently nonlinear phenomena in continuum mechanics. Variational principles.

2.073 Solid Mechanics: Plasticity and Inelastic Deformation

Prereq: 2.071 G (Fall) Not offered regularly; consult department 3-0-9 units

Physical basis of plastic/inelastic deformation of solids; metals, polymers, granular/rock-like materials. Continuum constitutive models for small and large deformation of elastic-(visco)plastic solids. Analytical and numerical solution of selected boundary value problems. Applications to deformation processing of metals.

2.074 Solid Mechanics: Elasticity

Prereq: 2.002 and 18.03 G (Fall) 3-0-9 units

Introduction to the theory and applications of nonlinear and linear elasticity. Strain, stress, and stress-strain relations. Several of the following topics: Spherically and cylindrically symmetric problems. Anisotropic material behavior. Piezoelectric materials. Effective properties of composites. Structural mechanics of beams and plates. Energy methods for structures. Two-dimensional problems. Stress concentration at cavities, concentrated loads, cracks, and dislocations. Variational methods and their applications; introduction to the finite element method. Introduction to wave propagation. 

R. Abeyaratne

2.075 Mechanics of Soft Materials

Prereq: None G (Fall) 3-0-9 units

Covers a number of fundamental topics in the emerging field of soft and active materials, including polymer mechanics and physics, poroelasticity, viscoelasticity, and mechanics of electro-magneto-active and other responsive polymers. Lectures, recitations, and experiments elucidate the basic mechanical and thermodynamic principles underlying soft and active materials. Develops an understanding of the fundamental mechanisms for designing soft materials that possess extraordinary properties, such as stretchable, tough, strong, resilient, adhesive and responsive to external stimuli, from molecular to bulk scales.

2.076[J] Mechanics of Heterogeneous Materials

Same subject as 16.223[J] Prereq: 2.002 , 3.032, 16.20 , or permission of instructor Acad Year 2023-2024: G (Fall) Acad Year 2024-2025: Not offered 3-0-9 units

See description under subject 16.223[J] .

B. L. Wardle, S-G. Kim

2.077 Solid Mechanics: Coupled Theories (New)

Prereq: 2.072 G (Fall) 3-0-9 units

Complex problems in solid mechanics for a wide range of applications require a knowledge of the foundational balance laws of mechanics, thermodynamics, and electrodynamics of continua, together with a knowledge of the structure and properties of the materials which are provided by particular constitutive models for the so-called smart-materials, and the materials used in the many applications that involve thermo-, chemo-, electro- and/or magneto-mechanical coupling. Reviews the basic balance laws and the constitutive equations of the classical coupled theories of thermoelasticity and poroelasticity, and provides an introduction to the nonlinear theories of electroelasticity and magnetoelasticity. Examines the governing coupled partial differential equations and suitable boundary conditions. Discusses numerical solutions of the partial differential equations.

2.080[J] Structural Mechanics

Same subject as 1.573[J] Prereq: 2.002 G (Fall) 4-0-8 units

Applies solid mechanics fundamentals to the analysis of marine, civil, and mechanical structures.  Continuum concepts of stress, deformation, constitutive response and boundary conditions are reviewed in selected examples. The principle of virtual work guides mechanics modeling of slender structural components (e.g., beams; shafts; cables, frames; plates; shells), leading to appropriate simplifying assumptions. Introduction to elastic stability.  Material limits to stress in design. Variational methods for computational structural mechanics analysis.

T. Wierzbicki, D. Parks

2.081[J] Plates and Shells: Static and Dynamic Analysis

Same subject as 16.230[J] Prereq: 2.071 , 2.080[J] , or permission of instructor G (Spring) 3-1-8 units

Stress-strain relations for plate and shell elements. Differential equations of equilibrium. Energy methods and approximate solutions. Bending and buckling of rectangular plates. Post-buckling and ultimate strength of cold formed sections and typical stiffened panels used in aerospace, civil, and mechanical engineering; offshore technology; and ship building. Geometry of curved surfaces. General theory of elastic, axisymmetric shells and their equilibrium equations. Buckling, crushing and bending strength of cylindrical shells with applications. Propagation of 1-D elastic waves in rods, geometrical and material dispersion. Plane, Rayleigh surface, and 3-D waves. 1-D plastic waves. Response of plates and shells to high-intensity loads. Dynamic plasticity and fracture. Application to crashworthiness and impact loading of structures.

2.082 Ship Structural Analysis and Design

Prereq: 2.081[J] and 2.701 G (Spring; second half of term) 3-0-3 units

Design application of analysis developed in 2.081[J] . Ship longitudinal strength and hull primary stresses. Ship structural design concepts. Design limit states including plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, and introduction to finite element analysis. Computer projects on the structural design of a midship module.

R. S. McCord, T. Wierzbicki

Computational Engineering

2.0911[j] computational design and fabrication (new).

Same subject as 6.4420[J] Subject meets with 6.8420 Prereq: Calculus II (GIR) and ( 6.1010 or permission of instructor) U (Spring) 3-0-9 units

See description under subject 6.4420[J] .

2.095 Introduction to Finite Element Methods

Subject meets with 2.098 Prereq: 2.086 or permission of instructor Acad Year 2023-2024: Not offered Acad Year 2024-2025: U (Spring) 3-0-9 units

Ordinary differential equation boundary value problems: 2nd-order, 4th-order spatial operators, eigenproblems. Partial differential equations for scalar fields: elliptic, parabolic, hyperbolic. Strong statement, weak form, minimization principle. Rayleigh-Ritz, Galerkin projection. Numerical interpolation, integration, differentiation, best-fit. Finite element method for spatial discretization in one and two space dimensions: formulation (linear, quadratic approximation), mesh generation, bases and discrete equations, uniform and adaptive refinement, a priori and a posteriori error estimates, sparse solvers, implementation, testing. Finite difference-finite element methods for mixed initial-boundary value problems; nonlinear problems and Newton iteration; linear elasticity. Applications in heat transfer and structural analysis. Assignments require MATLAB coding. Students taking graduate version complete additional work.

2.096[J] Introduction to Modeling and Simulation

Same subject as 6.7300[J] , 16.910[J] Prereq: 18.03 or 18.06 G (Fall) 3-6-3 units

See description under subject 6.7300[J] .

2.097[J] Numerical Methods for Partial Differential Equations

Same subject as 6.7330[J] , 16.920[J] Prereq: 18.03 or 18.06 G (Fall) 3-0-9 units

See description under subject 16.920[J] .

2.098 Introduction to Finite Element Methods

Subject meets with 2.095 Prereq: 2.086 or permission of instructor G (Spring) 3-0-9 units

Ordinary differential equation boundary value problems: 2nd-order, 4th-order spatial operators; eigenproblems. Partial differential equations for scalar fields: elliptic, parabolic, hyperbolic. Strong statement, weak form, minimization principle. Rayleigh-Ritz,  Galerkin projection. Numerical interpolation, integration, differentiation; best-fit. Finite element method for spatial discretization in one and two space dimensions: formulation (linear, quadratic approximation), mesh generation, bases and discrete equations, uniform and adaptive refinement, a priori and a posteriori error estimates, sparse solvers, implementation, testing. Finite difference-finite element methods for mixed initial-boundary value problems; nonlinear problems and Newton iteration; linear elasticity. Applications in heat transfer and structural analysis. Assignments require MATLAB coding. Students taking graduate version complete additional work.

2.099[J] Computational Mechanics of Materials

Same subject as 16.225[J] Prereq: Permission of instructor Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Spring) 3-0-9 units

See description under subject 16.225[J] .

R. Radovitzky

System Dynamics and Control

2.110 information, entropy, and computation.

Prereq: Physics I (GIR) U (Fall) Not offered regularly; consult department 3-0-6 units

Explores the ultimate limits to communication and computation, with an emphasis on the physical nature of information and information processing. Topics include information and computation, digital signals, codes, and compression. Biological representations of information. Logic circuits, computer architectures, and algorithmic information. Noise, probability, and error correction. The concept of entropy applied to channel capacity and to the second law of thermodynamics. Reversible and irreversible operations and the physics of computation. Quantum computation.

P. Penfield, Jr.

2.111[J] Quantum Computation

Same subject as 6.6410[J] , 8.370[J] , 18.435[J] Prereq: 8.05 , 18.06 , 18.700 , 18.701 , or 18.C06[J] G (Fall) 3-0-9 units

See description under subject 18.435[J] .

I. Chuang, A. Harrow, P. Shor

2.12 Introduction to Robotics

Subject meets with 2.120 Prereq: 2.004 U (Spring) 3-2-7 units

Cross-disciplinary studies in robot mechanics and intelligence. Emphasizes physical understanding of robot kinematics and dynamics, differential motion and energy method, design and control of robotic arms and mobile robots, and actuators, drives, and transmission. Second half of course focuses on algorithmic thinking and computation, computer vision and perception, planning and control for manipulation, localization and navigation, machine learning for robotics, and human-robot systems. Weekly laboratories include brushless DC motor control, design and fabrication of robotic arms and vehicles, robot vision and navigation, and programming and system integration using Robot Operating System (ROS). Group term project builds intelligent robots for specific applications of interest. Students taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

2.120 Introduction to Robotics

Subject meets with 2.12 Prereq: 2.004 or permission of instructor G (Spring) 3-2-7 units

Cross-disciplinary studies in robot mechanics and intelligence. Emphasizes physical understanding of robot kinematics and dynamics, differential motion and energy method, design and control of robotic arms and mobile robots, and actuators, drives, and transmission. Second half of course focuses on algorithmic thinking and computation, computer vision and perception, planning and control for manipulation, localization and navigation, machine learning for robotics, and human-robot systems. Weekly laboratories include brushless DC motor control, design and fabrication of robotic arms and vehicles, robot vision and navigation, and programming and system integration using Robot Operating System (ROS). Group term project builds intelligent robots for specific applications of interest. Students taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity.

2.121 Stochastic Systems

Subject meets with 2.122 , 2.22 Prereq: None. Coreq: 2.004 U (Spring) 3-0-9 units

Response of systems to stochastic excitation with design applications. Linear time-invariant systems, convolution, Fourier and Laplace transforms. Probability and statistics. Discrete and continuous random variables, derived distributions. Stochastic processes, auto-correlation. Stationarity and ergodicity, power spectral density. Systems driven by random functions, Wiener-Khinchine theorem.  Sampling and filtering. Short- and long-term statistics, statistics of extremes. Problems from mechanical vibrations and statistical linearization, statistical mechanics, and system prediction/identification. Students taking graduate version complete additional assignments and a short-term project.

N. M. Patrikalakis, T. P. Sapsis, M. S. Triantafyllou

2.122 Stochastic Systems

Subject meets with 2.121 , 2.22 Prereq: 2.004 and 2.087 G (Spring) 4-0-8 units

2.124[J] Robotics: Science and Systems (New)

Same subject as 6.4200[J] , 16.405[J] Prereq: (( 1.00 or 6.100A ) and ( 2.003[J] , 6.1010 , 6.1210 , or 16.06 )) or permission of instructor U (Spring) 2-6-4 units. Institute LAB

See description under subject 6.4200[J] . Enrollment limited.

L. Carlone, S. Karaman, D. Hadfield-Manell, J. Leonard

2.131 Advanced Instrumentation and Measurement

Prereq: Permission of instructor G (Spring) 3-6-3 units

Provides training in advanced instrumentation and measurement techniques. Topics include system level design, fabrication and evaluation with emphasis on systems involving concepts and technology from mechanics, optics, electronics, chemistry and biology. Simulation, modeling and design software. Use of a wide range of instruments/techniques (e.g., scanning electron microscope, dynamic signal/system analyzer, impedance analyzer, laser interferometer) and fabrication/machining methods (e.g., laser micro-machining, stereo lithography, computer controlled turning and machining centers). Theory and practice of both linear and nonlinear system identification techniques. Lab sessions include instruction and group project work. No final exam.

I. W. Hunter

2.14 Analysis and Design of Feedback Control Systems

Subject meets with 2.140 Prereq: 2.004 U (Spring) 3-3-6 units

Develops the fundamentals of feedback control using linear transfer function system models. Analysis in time and frequency domains. Design in the s-plane (root locus) and in the frequency domain (loop shaping). Describing functions for stability of certain non-linear systems. Extension to state variable systems and multivariable control with observers. Discrete and digital hybrid systems and use of z-plane design. Extended design case studies and capstone group projects. Students taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

D. L. Trumper, K. Youcef-Toumi

2.140 Analysis and Design of Feedback Control Systems

Subject meets with 2.14 Prereq: 2.004 or permission of instructor G (Spring) 3-3-6 units

Develops the fundamentals of feedback control using linear transfer function system models. Analysis in time and frequency domains. Design in the s-plane (root locus) and in the frequency domain (loop shaping). Describing functions for stability of certain non-linear systems. Extension to state variable systems and multivariable control with observers. Discrete and digital hybrid systems and use of z-plane design. Extended design case studies and capstone group projects. Student taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity.

D. Rowell, D. L. Trumper, K. Youcef-Toumi

2.141 Modeling and Simulation of Dynamic Systems

Prereq: Permission of instructor G (Fall) Not offered regularly; consult department 3-0-9 units

Modeling multidomain engineering systems at a level of detail suitable for design and control system implementation. Network representation, state-space models; multiport energy storage and dissipation, Legendre transforms; nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms; Control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission.

2.145 Design of Compliant Mechanisms, Machines and Systems (New)

Subject meets with 2.147 Prereq: 2.003[J] and 2.007 U (Fall) 3-3-6 units

Design, modeling and integration of compliance into systems that enable performance which is impractical to obtain via rigid mechanisms. Includes multiple strategies (pseudo-rigid body, topology synthesis, freedom and constraint topology) to engineer compliant mechanisms for mechanical systems. Emphasis is placed upon the integration of first principles (math/physics/engineering classes) to optimize kinematics, stiffness, energy storage/release, load capacity, efficiency and integration with actuation/sensing. Synthesize concepts, optimize them via computational models and test prototypes. Prototypes integrate multiple engineering sub-disciplines (e.g. mechanics + dynamics or mechanics + energy) and are drawn from biological systems, prosthetics, energy harvesting, precision instrumentation, robotics, space-based systems and others. Students taking graduate version complete additional assignments.

M.  Culpepper

2.147 Design of Compliant Mechanisms, Machines and Systems (New)

Subject meets with 2.145 Prereq: 2.003[J] and 2.007 G (Fall) 3-3-6 units

Design, modeling and integration of compliance into systems that enable performance which is impractical to obtain via rigid mechanisms. Students learn strategies (pseudo-rigid body, topology synthesis, freedom and constraint topology) to engineer compliant mechanisms for mechanical systems. Emphasis is placed upon the integration of first principles (math/physics/engineering classes) to optimize kinematics, stiffness, energy storage/release, load capacity, efficiency and integration with actuation/sensing. Students synthesize concepts, optimize them via computational models and test prototypes. Prototypes integrate multiple engineering sub-disciplines (e.g. mechanics + dynamics or mechanics + energy) and are drawn from biological systems, prosthetics, energy harvesting, precision instrumentation, robotics, space-based systems and others. Students taking graduate version complete additional assignments.

2.151 Advanced System Dynamics and Control

Prereq: 2.004 and ( 2.087 or 18.06 ) G (Fall) 4-0-8 units

Analytical descriptions of state-determined dynamic physical systems; time and frequency domain representations; system characteristics - controllability, observability, stability; linear and nonlinear system responses. Modification of system characteristics using feedback. State observers, Kalman filters. Modeling/performance trade-offs in control system design. Basic optimization tools. Positive systems. Emphasizes applications to physical systems.

J.-J. E. Slotine, K. Youcef-Toumi, N. Hogan

2.152[J] Nonlinear Control

Same subject as 9.110[J] Prereq: 2.151 , 6.7100[J] , 16.31 , or permission of instructor G (Spring) 3-0-9 units

Introduction to nonlinear control and estimation in physical and biological systems. Nonlinear stability theory, Lyapunov analysis, Barbalat's lemma. Feedback linearization, differential flatness, internal dynamics. Sliding surfaces. Adaptive nonlinear control and estimation. Multiresolution bases, nonlinear system identification. Contraction analysis, differential stability theory. Nonlinear observers. Asynchronous distributed computation and learning. Concurrent synchronization, polyrhythms. Monotone nonlinear systems. Emphasizes application to physical systems (robots, aircraft, spacecraft, underwater vehicles, reaction-diffusion processes, machine vision, oscillators, internet), machine learning, computational neuroscience, and systems biology. Includes term projects.

J.-J. E. Slotine

2.153 Adaptive Control and Connections to Machine Learning

Prereq: 2.151 Acad Year 2023-2024: G (Fall) Acad Year 2024-2025: Not offered 3-0-9 units

Lays the foundation of adaptive control, and investigates its interconnections with machine learning. Explores fundamental principles of adaptive control, including parameter estimation, recursive algorithms, stability properties, and conditions for convergence. Studies their relationship with machine learning, including the minimization of a performance error and fast convergence. Discusses robustness and regularization in both fields. Derives conditions of learning and implications of imperfect learning. Examines the trade-off between stability and learning. Focuses throughout the term on dynamic systems and on problems where real-time control is needed. Uses examples from aerospace, propulsion, automotive, and energy systems to elucidate the underlying concepts.

A. Annaswamy

2.154 Maneuvering and Control of Surface and Underwater Vehicles

Prereq: 2.22 G (Fall) 3-0-9 units

Maneuvering motions of surface and underwater vehicles. Derivation of equations of motion, hydrodynamic coefficients. Memory effects. Linear and nonlinear forms of the equations of motion. Control surfaces modeling and design. Engine, propulsor, and transmission systems modeling and simulation during maneuvering. Stability of motion. Principles of multivariable automatic control. Optimal control, Kalman filtering, loop transfer recovery. Term project: applications chosen from autopilots for surface vehicles; towing in open seas; remotely operated vehicles.

M. S. Triantafyllou

2.155 Artificial Intelligence and Machine Learning for Engineering Design (New)

Subject meets with 2.156 Prereq: 2.086 , 6.100A , or permission of instructor U (Fall) 3-0-9 units

Machine learning and artificial intelligence techniques in engineering design applications. Emphasizes state-of-the-art machine learning techniques to design new products or systems or solve complex engineering problems. Lectures cover the theoretical and practical aspects of machine learning and optimization methods. Challenge problems, research paper discussions, and interactive in-class activities are used to highlight the unique challenges of machine learning for design applications. A group term project on students' applications of interest. Basic programming and machine learning familiarity are recommended. Students taking graduate version complete additional assignments. 

2.156 Artificial Intelligence and Machine Learning for Engineering Design (New)

Subject meets with 2.155 Prereq: None G (Fall) 3-0-9 units

Machine learning and artificial intelligence techniques in engineering design applications. Emphasizes state-of-the-art machine learning techniques to design new products or systems or solve complex engineering problems. Lectures cover the theoretical and practical aspects of machine learning and optimization methods. Challenge problems, research paper discussions, and interactive in-class activities are used to highlight the unique challenges of machine learning for design applications. A group term project on students' applications of interest. Basic programming and machine learning familiarity are recommended. Students taking graduate version complete additional assignments.

2.16 Learning Machines

Subject meets with 2.168 Prereq: 2.086 , 18.075 , and ( 6.3700 or 18.05 ) U (Spring) Not offered regularly; consult department 4-0-8 units

Introduces fundamental concepts and encourages open-ended exploration of the increasingly topical intersection between artificial intelligence and the physical sciences. Energy and information, and their respective optimality conditions are used to define supervised and unsupervised learning algorithms; as well as ordinary and partial differential equations. Subsequently, physical systems with complex constitutive relationships are drawn from elasticity, biophysics, fluid mechanics, hydrodynamics, acoustics, and electromagnetics to illustrate how machine learning-inspired optimization can approximate solutions to forward and inverse problems in these domains.

G. Barbastathis

2.160 Identification, Estimation, and Learning

Prereq: 2.151 G (Fall) 3-0-9 units

Provides a broad theoretical basis for system identification, estimation, and learning. Least squares estimation and its convergence properties, Kalman filter and extended Kalman filter, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, Volterra expansions, informative data sets, persistent excitation, asymptotic variance, central limit theorems, model structure selection, system order estimate, maximum likelihood, unbiased estimates, Cramer-Rao lower bound, Kullback-Leibler information distance, Akaike's information criterion, experiment design, and model validation.

2.165[J] Robotics

Same subject as 9.175[J] Prereq: 2.151 or permission of instructor G (Fall) 3-0-9 units

Introduction to robotics and learning in machines. Kinematics and dynamics of rigid body systems. Adaptive control, system identification, sparse representations. Force control, adaptive visual servoing. Task planning, teleoperation, imitation learning. Navigation. Underactuated systems, approximate optimization and control. Dynamics of learning and optimization in networks. Elements of biological planning and control. Motor primitives, entrainment, active sensing, binding models. Term projects.

J.-J. E. Slotine, H. Asada

2.166 Autonomous Vehicles

Prereq: 6.041B or permission of instructor G (Spring) Not offered regularly; consult department 3-1-8 units

Theory and application of probabilistic techniques for autonomous mobile robotics. Topics include probabilistic state estimation and decision making for mobile robots; stochastic representations of the environment; dynamic models and sensor models for mobile robots; algorithms for mapping and localization; planning and control in the presence of uncertainty; cooperative operation of multiple mobile robots; mobile sensor networks; application to autonomous marine (underwater and floating), ground, and air vehicles. Enrollment limited to 8.

J. J. Leonard

2.168 Learning Machines

Subject meets with 2.16 Prereq: None G (Spring) Not offered regularly; consult department 3-0-9 units

2.171 Analysis and Design of Digital Control Systems

Prereq: 2.14 , 2.151 , or permission of instructor G (Fall) Not offered regularly; consult department 3-3-6 units

A comprehensive introduction to digital control system design, reinforced with hands-on laboratory experiences. Major topics include discrete-time system theory and analytical tools; design of digital control systems via approximation from continuous time; direct discrete-time design; loop-shaping design for performance and robustness; state-space design; observers and state-feedback; quantization and other nonlinear effects; implementation issues. Laboratory experiences and design projects connect theory with practice.

D. L. Trumper

2.174[J] Advancing Mechanics and Materials via Machine Learning

Same subject as 1.121[J] Subject meets with 1.052 Prereq: Permission of instructor G (Spring) 3-0-9 units

See description under subject 1.121[J] .

2.177[J] Designing Virtual Worlds (New)

Same subject as CMS.342[J] Subject meets with 2.178[J] , CMS.942[J] Prereq: None U (Fall, Spring) 3-1-2 units

Three primary areas of focus are: creating new Virtual Reality experiences; mapping the state of emerging tools; and hosting guests - leaders in the VR/XR community, who serve as coaches for projects. Students have significant leeway to customize their own learning environment. As the field is rapidly evolving, each semester focuses on a new aspect of virtual worlds, based on the current state of innovations. Students work in teams of interdisciplinary peers from Berklee College of Music and Harvard University. Students taking graduate version complete additional assignments.

2.178[J] Designing Virtual Worlds (New)

Same subject as CMS.942[J] Subject meets with 2.177[J] , CMS.342[J] Prereq: None G (Fall, Spring) 3-1-2 units

2.18 Biomolecular Feedback Systems

Subject meets with 2.180 Prereq: Biology (GIR) , 18.03 , or permission of instructor G (Spring) 3-0-9 units

Comprehensive introduction to dynamics and control of biomolecular systems with emphasis on design/analysis techniques from control theory. Provides a review of biology concepts, regulation mechanisms, and models. Covers basic enabling technologies, engineering principles for designing biological functions, modular design techniques, and design limitations. Students taking graduate version complete additional assignments.

D. Del Vecchio, R. Weiss

2.180 Biomolecular Feedback Systems

Subject meets with 2.18 Prereq: Biology (GIR) , 18.03 , or permission of instructor U (Spring) 3-0-9 units

D. Del Vecchio

2.183[J] Biomechanics and Neural Control of Movement

Same subject as 9.34[J] Subject meets with 2.184 Prereq: 2.004 or permission of instructor G (Spring) 3-0-9 units

Presents a quantitative description of how biomechanical and neural factors interact in human sensory-motor behavior. Students survey recent literature on how motor behavior is controlled, comparing biological and robotic approaches to similar tasks. Topics may include a review of relevant neural, muscular and skeletal physiology, neural feedback and "equilibrium-point" theories, co-contraction strategies, impedance control, kinematic redundancy, optimization, intermittency, contact tasks and tool use. Students taking graduate version complete additional assignments.

2.184 Biomechanics and Neural Control of Movement

Subject meets with 2.183[J] , 9.34[J] Prereq: 2.004 or permission of instructor Acad Year 2023-2024: Not offered Acad Year 2024-2025: U (Spring) 3-0-9 units

Fluid Mechanics and Combustion

2.20 marine hydrodynamics.

Prereq: 1.060 , 2.006 , 2.016 , or 2.06 G (Fall) 4-1-7 units

The fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. Transport theorem and conservation principles. Navier-Stokes' equation. Dimensional analysis. Ideal and potential flows. Vorticity and Kelvin's theorem. Hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory. Viscous-fluid flow, laminar and turbulent boundary layers. Model testing, scaling laws. Application of potential theory to surface waves, energy transport, wave/body forces. Linearized theory of lifting surfaces. Experimental project in the towing tank or propeller tunnel.

D. K. P. Yue

2.22 Design Principles for Ocean Vehicles

Subject meets with 2.121 , 2.122 Prereq: 2.20 G (Spring) 3-1-8 units

Design tools for analysis of linear systems and random processes related to ocean vehicles; description of ocean environment including random waves, ocean wave spectra and their selection; short-term and long-term wave statistics; and ocean currents. Advanced hydrodynamics for design of ocean vehicles and offshore structures, including wave forces on towed and moored structures; inertia vs. drag-dominated flows; vortex induced vibrations (VIV) of offshore structures; ship seakeeping and sensitivity of seakeeping performance. Design exercises in application of principles. Laboratory exercises in seakeeping and VIV at model scale.

2.23 Hydrofoils and Propellers

Prereq: 2.20 and 18.085 Acad Year 2023-2024: G (Spring) Acad Year 2024-2025: Not offered 3-0-9 units

Reviews the theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections and unsteady flow problems. Covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, control surface, propeller and wind turbine rotor design. Topics include propeller lifting line and lifting surface theory; wake adapted propellers, steady and unsteady propeller thrust and torque; waterjets; performance analysis and design of wind turbine rotors. Presents numerical principles of vortex lattice and lifting surface panel methods. Projects illustrate the development of theoretical and computational methods for lifting, propulsion and wind turbine applications.

P. D. Sclavounos

2.24[J] Seakeeping of Ships and Offshore Energy Systems

Same subject as 1.692[J] Prereq: 2.20 and 18.085 Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Spring) 4-0-8 units

Surface wave theory, conservation laws and boundary conditions, properties of regular surface waves and random ocean waves. Linearized theory of floating body dynamics, kinematic and dynamic free surface conditions, body boundary conditions. Simple harmonic motions. Diffraction and radiation problems, added mass and damping matrices. General reciprocity identities on diffraction and radiation. Ship wave resistance theory, Kelvin wake physics, ship seakeeping in regular and random waves. Discusses point wave energy absorbers, beam sea and head-sea devises, oscillating water column device and Well's turbine. Discusses offshore floating energy systems and their interaction with ambient waves, current and wind, including oil and gas platforms, liquefied natural gas (LNG) vessels and floating wind turbines. Homework drawn from real-world applications.

2.25 Fluid Mechanics

Prereq: 2.006 or 2.06; Coreq: 18.075 or 18.085 G (Fall) 4-0-8 units

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows.

A. F. Ghoniem, A. E. Hosoi, G. H. McKinley, A. T. Patera

2.250[J] Fluids and Diseases

Same subject as 1.631[J] , HST.537[J] Subject meets with 1.063 Prereq: None Acad Year 2023-2024: G (Spring) Acad Year 2024-2025: Not offered 3-3-6 units

See description under subject 1.631[J] .

2.26[J] Advanced Fluid Dynamics

Same subject as 1.63[J] Prereq: 18.085 and ( 2.25 or permission of instructor) G (Spring) 4-0-8 units

Fundamentals of fluid dynamics intrinsic to natural physical phenomena and/or engineering processes. Discusses a range of topics and advanced problem-solving techniques. Sample topics include brief review of basic laws of fluid motion, scaling and approximations, creeping flows, boundary layers in high-speed flows, steady and transient, similarity method of solution, buoyancy-driven convection in porous media, dispersion in steady or oscillatory flows, physics and mathematics of linearized instability, effects of shear and stratification. In alternate years, two of the following modules will be offered: I: Geophysical Fluid Dynamics of Coastal Waters, II: Capillary Phenomena, III: Non-Newtonian Fluids, IV: Flagellar Swimming.

T. R. Akylas, G. H. McKinley, R. Stocker

2.28 Fundamentals and Applications of Combustion

Prereq: 2.006 or (2.051 and 2.06) Acad Year 2023-2024: G (Fall) Acad Year 2024-2025: Not offered 3-0-9 units

Fundamentals and modeling of reacting gas dynamics and combustion using analytical and numerical methods. Conservation equations of reacting flows. Multi-species transport, chemical thermodynamics and chemical kinetics. Non-equilibrium flow. Detonation and reacting boundary layers. Ignition, flammability, and extinction. Premixed and diffusion flames. Combustion instabilities. Supersonic combustion. Turbulent combustion. Liquid and solid burning. Fire, safety, and environmental impact. Applications to power and propulsion.

A. F. Ghoniem

2.29 Numerical Fluid Mechanics

Subject meets with 2.290 Prereq: 18.075 and ( 2.006 , 2.016 , 2.06, 2.20 , or 2.25 ) G (Spring) 4-0-8 units

Introduction to numerical methods and MATLAB: errors, condition numbers and roots of equations. Navier-Stokes. Direct and iterative methods for linear systems. Finite differences for elliptic, parabolic and hyperbolic equations. Fourier decomposition, error analysis and stability. High-order and compact finite-differences. Finite volume methods. Time marching methods. Navier-Stokes solvers. Grid generation. Finite volumes on complex geometries. Finite element methods. Spectral methods. Boundary element and panel methods. Turbulent flows. Boundary layers. Lagrangian Coherent Structures. Includes a final research project.  Students taking graduate version complete additional assignments.

P. F. J. Lermusiaux

2.290 Numerical Fluid Mechanics

Subject meets with 2.29 Prereq: 2.005 U (Spring) 4-0-8 units

P. Lermusiaux

2.341[J] Macromolecular Hydrodynamics

Same subject as 10.531[J] Prereq: 2.25 , 10.301 , or permission of instructor G (Spring) 3-0-6 units

Physical phenomena in polymeric liquids undergoing deformation and flow. Kinematics and material functions for complex fluids; techniques of viscometry, rheometry; and linear viscoelastic measurements for polymeric fluids. Generalized Newtonian fluids. Continuum mechnanics, frame invariance, and convected derivatives for finite strain viscoelasticity. Differential and integral constitutive equations for viscoelastic fluids. Analytical solutions to isothermal and non-isothermal flow problems; the roles of non-Newtonian viscosity, linear viscoelasticity, normal stresses, elastic recoil, stress relaxation in processing flows. Introduction to molecular theories for dynamics of polymeric fluids. (Extensive class project and presentation required instead of a final exam).

R. C. Armstrong, G. H. McKinley

MEMS and Nanotechnology

2.37 fundamentals of nanoengineering.

Subject meets with 2.370 Prereq: Permission of instructor G (Spring) 3-0-9 units

Presents the fundamentals of molecular modeling in engineering in the context of nanoscale mechanical engineering applications. Statistical mechanics and its connection to engineering thermodynamics. Molecular origin and limitations of macroscopic descriptions and constitutive relations for equilibrium and non-equilibrium behavior. Introduction to molecular simulation, solid-state physics and electrokinetic phenomena. Discusses molecular approaches to modern nanoscale engineering problems. Graduate students are required to complete additional assignments with stronger analytical content.

N. G. Hadjiconstantinou

2.370 Fundamentals of Nanoengineering

Subject meets with 2.37 Prereq: Chemistry (GIR) and 2.001 U (Spring) 3-0-9 units

2.391[J] Nanostructure Fabrication

Same subject as 6.6600[J] Prereq: 2.710 , 6.2370 , 6.2600[J] , or permission of instructor G (Spring) 4-0-8 units

See description under subject 6.6600[J] .

K. K. Berggren

Thermodynamics

2.42 general thermodynamics.

Prereq: Permission of instructor G (Fall) 3-0-9 units

General foundations of thermodynamics from an entropy point of view, entropy generation and transfer in complex systems. Definitions of work, energy, stable equilibrium, available energy, entropy, thermodynamic potential, and interactions other than work (nonwork, heat, mass transfer). Applications to properties of materials, bulk flow, energy conversion, chemical equilibrium, combustion, and industrial manufacturing.

2.43 Advanced Thermodynamics (New)

Prereq: 2.42 or permission of instructor G (Spring) 4-0-8 units

<p class="xmsolistparagraph">Self-contained concise review of general thermodynamics concepts, multicomponent equilibrium properties, chemical equilibrium, electrochemical potentials, and chemical kinetics, as needed to introduce the methods of nonequilibrium thermodynamics and to provide a unified understanding of phase equilibria, transport and nonequilibrium phenomena useful for future energy and climate engineering technologies. Applications include: second-law efficiencies and methods to allocate primary energy consumptions and CO2 emissions in cogeneration and hybrid power systems, minimum work of separation, maximum work of mixing, osmotic pressure and membrane equilibria, metastable states, spinodal decomposition, Onsager's near-equilibrium reciprocity in thermodiffusive, thermoelectric, and electrokinetic cross effects.

G. P. Beretta

Heat and Mass Transfer

2.500 desalination and water purification.

Prereq: 1.020 , 2.006 , 10.302 , (2.051 and 2.06), or permission of instructor G (Spring) Not offered regularly; consult department 3-0-9 units

Introduces the fundamental science and technology of desalinating water to overcome water scarcity and ensure sustainable water supplies. Covers basic water chemistry, flash evaporation, reverse osmosis and membrane engineering, electrodialysis, nanofiltration, solar desalination, energy efficiency of desalination systems, fouling and scaling, environmental impacts, and economics of desalination systems. Open to upper-class undergraduates.

J. H. Lienhard, M. Balaban

2.51 Intermediate Heat and Mass Transfer

Prereq: ( 2.005 and 18.03 ) or permission of instructor U (Fall) 3-0-9 units

Covers conduction (governing equations and boundary conditions, steady and unsteady heat transfer, resistance concept); laminar and turbulent convection (forced-convection and natural-convection boundary layers, external flows); radiation (blackbody and graybody exchange, spectral and solar radiation); coupled conduction, convection, radiation problems; synthesis of analytical, computational, and experimental techniques; and mass transfer at low rates, evaporation.

J. H. Lienhard, A. T. Patera, E. N. Wang

2.52[J] Modeling and Approximation of Thermal Processes

Same subject as 4.424[J] Prereq: 2.51 G (Fall) Not offered regularly; consult department 3-0-9 units

Provides instruction on how to model thermal transport processes in typical engineering systems such as those found in manufacturing, machinery, and energy technologies. Successive modules cover basic modeling tactics for particular modes of transport, including steady and unsteady heat conduction, convection, multiphase flow processes, and thermal radiation. Includes a creative design project executed by the students.

L. R. Glicksman

2.55 Advanced Heat and Mass Transfer

Prereq: 2.51 G (Spring) 4-0-8 units

Advanced treatment of fundamental aspects of heat and mass transport. Covers topics such as diffusion kinetics, conservation laws, laminar and turbulent convection, mass transfer including phase change or heterogeneous reactions, and basic thermal radiation. Problems and examples include theory and applications drawn from a spectrum of engineering design and manufacturing problems.

J. H. Lienhard

2.57 Nano-to-Macro Transport Processes

Subject meets with 2.570 Prereq: 2.005 , 2.051, or permission of instructor G (Spring) Not offered regularly; consult department 3-0-9 units

Parallel treatments of photons, electrons, phonons, and molecules as energy carriers; aiming at a fundamental understanding of descriptive tools for energy and heat transport processes, from nanoscale to macroscale. Topics include energy levels; statistical behavior and internal energy; energy transport in the forms of waves and particles; scattering and heat generation processes; Boltzmann equation and derivation of classical laws; and deviation from classical laws at nanoscale and their appropriate descriptions. Applications in nanotechnology and microtechnology. Students taking the graduate version complete additional assignments.

2.570 Nano-to-Macro Transport Processes

Subject meets with 2.57 Prereq: 2.005 , 2.051, or permission of instructor U (Spring) Not offered regularly; consult department 3-0-9 units

2.58 Radiative Transfer

Prereq: 2.51 , 10.302 , or permission of instructor G (Spring) Not offered regularly; consult department 3-0-9 units

Principles of thermal radiation and their application to engineering heat and photon transfer problems. Quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

2.59[J] Thermal Hydraulics in Power Technology

Same subject as 10.536[J] , 22.313[J] Prereq: 2.006 , 10.302 , 22.312 , or permission of instructor Acad Year 2023-2024: G (Fall) Acad Year 2024-2025: Not offered 3-2-7 units

See description under subject 22.313[J] .

E. Baglietto, M. Bucci

Energy and Power Systems

2.60[j] fundamentals of advanced energy conversion.

Same subject as 10.390[J] Subject meets with 2.62[J] , 10.392[J] , 22.40[J] Prereq: 2.006 , (2.051 and 2.06), or permission of instructor U (Spring) 4-0-8 units

Fundamentals of thermodynamics, chemistry, and transport applied to energy systems. Analysis of energy conversion and storage in thermal, mechanical, chemical, and electrochemical processes in power and transportation systems, with emphasis on efficiency, performance, and environmental impact. Applications to fuel reforming and alternative fuels, hydrogen, fuel cells and batteries, combustion, catalysis, combined and hybrid power cycles using fossil, nuclear and renewable resources. CO 2 separation and capture. Biomass energy. Students taking graduate version complete additional assignments.

A. F. Ghoniem, W. Green

2.603 Fundamentals of Smart and Resilient Grids

Prereq: 2.003[J] U (Fall) Not offered regularly; consult department 4-0-8 units

Introduces the fundamentals of power system structure, operation and control. Emphasizes the challenges and opportunities for integration of new technologies: photovoltaic, wind, electric storage, demand response, synchrophasor measurements. Introduces the basics of power system modeling and analysis. Presents the basic phenomena of voltage and frequency stability as well technological and regulatory constraints on system operation. Describes both the common and emerging automatic control systems and operator decision-making policies. Relies on a combination of traditional lectures, homework assignments, and group projects. Students taking graduate version complete additional assignments.

K. Turitsyn

2.61 Internal Combustion Engines

Prereq: 2.006 G (Spring) Not offered regularly; consult department 3-1-8 units

Fundamentals of how the design and operation of internal combustion engines affect their performance, efficiency, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, relevant to engine power, efficiency, and emissions. Examination of design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. Engine Laboratory project. For graduate and senior undergraduate students.

W. K. Cheng

2.611 Marine Power and Propulsion

Subject meets with 2.612 Prereq: 2.005 G (Fall) 4-0-8 units

Selection and evaluation of commercial and naval ship power and propulsion systems. Analysis of propulsors, prime mover thermodynamic cycles, propeller-engine matching. Propeller selection, waterjet analysis, review of alternative propulsors; thermodynamic analyses of Rankine, Brayton, Diesel, and Combined cycles, reduction gears and integrated electric drive. Battery operated vehicles, fuel cells. Term project requires analysis of alternatives in propulsion plant design for given physical, performance, and economic constraints. Graduate students complete different assignments and exams.

J. Harbour, M. S. Triantafyllou, R. S. McCord

2.612 Marine Power and Propulsion

Subject meets with 2.611 Prereq: 2.005 U (Fall) 4-0-8 units

2.62[J] Fundamentals of Advanced Energy Conversion

Same subject as 10.392[J] , 22.40[J] Subject meets with 2.60[J] , 10.390[J] Prereq: 2.006 , (2.051 and 2.06), or permission of instructor G (Spring) 4-0-8 units

Fundamentals of thermodynamics, chemistry, and transport applied to energy systems. Analysis of energy conversion and storage in thermal, mechanical, chemical, and electrochemical processes in power and transportation systems, with emphasis on efficiency, performance and environmental impact. Applications to fuel reforming and alternative fuels, hydrogen, fuel cells and batteries, combustion, catalysis, combined and hybrid power cycles using fossil, nuclear and renewable resources. CO 2 separation and capture. Biomass energy. Meets with 2.60[J] when offered concurrently; students taking the graduate version complete additional assignments.

2.625[J] Electrochemical Energy Conversion and Storage: Fundamentals, Materials and Applications

Same subject as 10.625[J] Prereq: 2.005 , 3.046 , 3.53 , 10.40 , (2.051 and 2.06), or permission of instructor G (Fall) Not offered regularly; consult department 4-0-8 units

Fundamental concepts, tools, and applications in electrochemical science and engineering. Introduces thermodynamics, kinetics and transport of electrochemical reactions. Describes how materials structure and properties affect electrochemical behavior of particular applications, for instance in lithium rechargeable batteries, electrochemical capacitors, fuel cells, photo electrochemical cells, and electrolytic cells. Discusses state-of-the-art electrochemical energy technologies for portable electronic devices, hybrid and plug-in vehicles, electrical vehicles. Theoretical and experimental exploration of electrochemical measurement techniques in cell testing, and in bulk and interfacial transport measurements (electronic and ionic resistivity and charge transfer cross the electrode-electrolyte interface).

Y. Shao-Horn

2.626 Fundamentals of Photovoltaics

Prereq: Permission of instructor G (Fall) Not offered regularly; consult department 4-0-8 units

Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Studies commercial and emerging photovoltaic technologies. Cross-cutting themes include conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, and risk analysis. Photovoltaic technology evolution in the context of markets, policies, society, and environment. Graduate students complete additional work.

T. Buonassisi

2.627 Fundamentals of Photovoltaics

Prereq: Permission of instructor U (Fall) Not offered regularly; consult department 4-0-8 units

2.630 Interfacial Engineering (New)

Interfacial interactions are ubiquitous in many industries including energy, water, agriculture, medical, transportation, and consumer products. Transport processes are typically limited by interfaces. Addresses how interfacial properties (eg., chemistry, morphology, thermal, electrical) can be engineered for significant efficiency enhancements. Topics include surface tension and wetting phenomena, thermodynamics of interfaces, surface chemistry and morphology, nonwetting, slippery, and superwetting surfaces, charged interfaces and electric double layers, intermolecular forces, Van der Waals and double-layer forces, DLVO theory, electrowetting and electro-osmotic flows, electrochemical bubbles, surfactants, phase transitions, and bio-interfaces. Manufacturing approaches, entrepreneurial efforts to translate technologies to markets, guest lectures and start-up company tours provide real-world exposure.  Anticipated enrollment is 15-20.

K. Varanasi

2.65[J] Sustainable Energy

Same subject as 1.818[J] , 10.391[J] , 11.371[J] , 22.811[J] Subject meets with 2.650[J] , 10.291[J] , 22.081[J] Prereq: Permission of instructor G (Fall) 3-1-8 units

See description under subject 22.811[J] .

M. W. Golay

2.650[J] Introduction to Sustainable Energy

Same subject as 10.291[J] , 22.081[J] Subject meets with 1.818[J] , 2.65[J] , 10.391[J] , 11.371[J] , 22.811[J] Prereq: Permission of instructor U (Fall) 3-1-8 units

See description under subject 22.081[J] . Limited to juniors and seniors.

2.651[J] Introduction to Energy in Global Development

Same subject as EC.711[J] Subject meets with EC.791 Prereq: None U (Spring) 3-2-7 units

See description under subject EC.711[J] . Enrollment limited by lottery; must attend first class session.

D. Sweeney, S. Hsu

2.652[J] Applications of Energy in Global Development

Same subject as EC.712[J] Subject meets with EC.782 Prereq: None U (Fall) 4-0-8 units

See description under subject EC.712[J] . Limited to 20; preference to students who have taken EC.711[J] .

D. Sweeney, Staff

Experimental Engineering

2.670 mechanical engineering tools.

Prereq: None U (Fall, IAP, Spring) 0-1-2 units

Introduces the fundamentals of machine tools use and fabrication techniques. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Mechanical Engineering students are advised to take this subject in the first IAP after declaring their major. Enrollment may be limited due to laboratory capacity. Preference to Course 2 majors and minors.

M. Culpepper

2.671 Measurement and Instrumentation

Prereq: Physics II (GIR) , 2.001 , 2.003[J] , and 2.086 U (Fall, Spring) 3-3-6 units. Institute LAB

Introduces fundamental concepts and experimental techniques for observation and measurement of physical variables such as force and motion, liquid and gas properties, physiological parameters, and measurements of light, sound, electrical quantities, and temperature. Emphasizes mathematical techniques including uncertainty analysis and statistics, Fourier analysis, frequency response, and correlation functions. Uses engineering knowledge to select instruments and design experimental methods to obtain and interpret meaningful data. Guided learning during lab experiments promotes independent experiment design and measurements performed outside the lab in the semester-long "Go Forth and Measure" project. Advances students' ability to critically read, evaluate, and extract specific technical meaning from information in a variety of media, and provides extensive instruction and practice in written, graphical, and oral communication. Enrollment limited.

I. W. Hunter, M. Kolle, B. Hughey

2.673[J] Instrumentation and Measurement for Biological Systems

Same subject as 20.309[J] Subject meets with 20.409 Prereq: ( Biology (GIR) , Physics II (GIR) , 6.100B , and 18.03 ) or permission of instructor U (Fall, Spring) 3-6-3 units

See description under subject 20.309[J] . Enrollment limited; preference to Course 20 undergraduates.

P. Blainey, S. Manalis, E. Frank, S. Wasserman, J. Bagnall, E. Boyden, P. So

2.674 Introduction to Micro/Nano Engineering Laboratory

Prereq: Physics II (GIR) or permission of instructor U (Spring) 1-3-2 units Credit cannot also be received for 2.675 , 2.676

Presents concepts, ideas, and enabling tools for nanoengineering through experiential lab modules, which include microfluidics, microelectromechanical systems (MEMS), and nanomaterials and nanoimaging tools such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). Provides knowledge and experience via building, observing and manipulating micro- and nanoscale structures. Exposes students to fluid, thermal, and dynamic systems at small scales. Enrollment limited; preference to Course 2 and 2-A majors and minors.

N. Fang, S. G. Kim, R. Karnik, M. Kolle, J. Kim

2.675 Micro/Nano Engineering Laboratory

Subject meets with 2.676 Prereq: 2.25 and (6.777 or permission of instructor) G (Fall) 2-3-7 units Credit cannot also be received for 2.674

Covers advanced nanoengineering via practical lab modules in connection with classical fluid dynamics, mechanics, thermodynamics, and material physics. Labs include microfluidic systems, microelectromechanical systems (MEMS), emerging nanomaterials such as graphene, carbon nanotubes (CNTs), and nanoimaging tools. Student teams lead an experimental term project that uses the tools and knowledge acquired through the lab modules and experimental work, and culminates in a report and presentation. Recitations cover idea development, experiment design, planning and execution, and analysis of results pertinent to the project. Enrollment limited.

B. Comeau, J. Kim

2.676 Micro/Nano Engineering Laboratory

Subject meets with 2.675 Prereq: 2.001 , 2.003[J] , 2.671 , and Coreq: ( 2.005 or (2.051 and 2.06)) ; or permission of instructor U (Fall) 2-3-7 units Credit cannot also be received for 2.674

Studies advanced nanoengineering via experiental lab modules with classical fluid dynamics, mechanics, thermodynamics, and materials science. Lab modules include microfluidic systems; microelectromechanical systems (MEMS); emerging nanomaterials, such as graphene and carbon nanotubes (CNTs); and nanoimaging tools. Recitation develops in-depth knowledge and understanding of physical phenomena observed in the lab through quantitative analysis. Students have the option to engage in term projects led by students taking 2.675 . Enrollment limited; preference to Course 2 and 2-OE majors and minors.

2.677 Design and Experimentation for Ocean Engineering

Prereq: 2.00A and 2.086 ; Coreq: 2.016 or permission of instructor U (Fall) Not offered regularly; consult department 0-3-3 units

Design and experimental observation for ocean engineering systems focusing on the fundamentals of ocean wave propagation, ocean wave spectra and wave dispersion, cavitation, added mass, acoustic sound propagation in water, sea loads on offshore structures, design of experiments for ship model testing, fish-like swimming propulsion, propellers, and ocean energy harvesting. Emphasizes fundamentals of data analysis of signals from random environments using Fourier transforms, noise filtering, statistics and error analysis using MATLAB. Students carry out experiential laboratory exercises in various Ocean Engineering laboratories on campus, including short labs and demos, longer exercises with written reports, and a final experimental design project. Enrollment may be limited due to laboratory capacity.

2.678 Electronics for Mechanical Systems

Prereq: Physics II (GIR) U (Fall, Spring) 2-2-2 units

Practical introduction to the fundamentals of electronics in the context of electro-mechanical systems, with emphasis on experimentation and project work in basic electronics. Laboratory exercises include the design and construction of simple electronic devices, such as power supplies, amplifiers, op-amp circuits, switched mode dc-dc converters, and dc motor drivers. Surveys embedded microcontrollers as system elements. Laboratory sessions stress the understanding of electronic circuits at the component level, but also point out the modern approach of system integration using commercial modules and specialized integrated circuits. Enrollment may be limited due to laboratory capacity; preference to Course 2 majors and minors.

S. Banzaert, J. Leonard, M. Kolle, D. Trumper

2.679 Electronics for Mechanical Systems II

Prereq: 2.086 , 2.678 , and 18.03 U (Spring) 2-3-1 units

Extends the concepts and techniques developed in 2.678 to include complex systems and modeling of real-world elements with a strong emphasis on lab experimentation and independent project work. Topics include sampling theory, energy storage, embedded mobile systems, autonomous navigation, printed circuit board design, system integration, and machine vision. Enrollment may be limited; preference to Course 2 majors.

S. Banzaert, J. Leonard

Oceanographic Engineering and Acoustics

2.680 unmanned marine vehicle autonomy, sensing, and communication.

Prereq: Permission of instructor G (Spring) 2-6-4 units

Focuses on software and algorithms for autonomous decision making (autonomy) by underwater vehicles operating in ocean environments. Discusses how autonomous marine vehicles (UMVs) adapt to the environment for improved sensing performance. Covers sensors for acoustic, biological and chemical sensing and their integration with the autonomy system for environmentally adaptive undersea mapping and observation. Introduces students to the underwater acoustic communication environment and various options for undersea navigation, highlighting their relevance to the operation of collaborative undersea networks for environmental sensing. Labs involve the use of the MOOP-IvP autonomy software for the development of integrated sensing, modeling and control solutions. Solutions modeled in simulation environments and include field tests with small autonomous surface and underwater vehicles operated on the Charles River. Limited enrollment.

H. Schmidt, J. J. Leonard, M. Benjamin

2.681 Environmental Ocean Acoustics

Prereq: 2.066 , 18.075 , or permission of instructor G (Fall) Not offered regularly; consult department 3-0-9 units

Fundamentals of underwater sound, and its application to mapping and surveillance in an ocean environment. Wave equations for fluid and elastic media. Reflection and transmission of sound at plane interfaces. Wave theory representation of acoustic source radiation and propagation in shallow and deep ocean waveguides. Interaction of underwater sound with elastic waves in the seabed and an Arctic ice cover, including effects of porosity and anisotropy. Numerical modeling of the propagation of underwater sound, including spectral methods, normal mode theory, and the parabolic equation method, for laterally homogeneous and inhomogeneous environments. Doppler effects. Effects of oceanographic variability and fluctuation - spatial and temporal coherence. Generation and propagation of ocean ambient noise. Modeling and simulation of signals and noise in traditional sonar systems, as well as modern, distributed, autonomous acoustic surveillance systems.

2.682 Acoustical Oceanography

Prereq: 2.681 G (Spring) Not offered regularly; consult department 3-0-9 units Can be repeated for credit.

Provides brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Addresses the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Concentrates on specific case studies, taken from current research journals.

J. F. Lynch, Woods Hole Staff

2.683 Marine Bioacoustics and Geoacoustics

Prereq: 2.681 G (Spring) 3-0-9 units Can be repeated for credit.

Both active and passive acoustic methods of measuring marine organisms, the seafloor, and their interactions are reviewed. Acoustic methods of detecting, observing, and quantifying marine biological organisms are described, as are acoustic methods of measuring geological properties of the seafloor, including depth, and surficial and volumetric composition. Interactions are also described, including effects of biological scatterers on geological measurements, and effects of seafloor scattering on measurements of biological scatterers on, in, or immediately above the seafloor. Methods of determining small-scale material properties of organisms and the seafloor are outlined. Operational methods are emphasized, and corresponding measurement theory is described. Case studies are used in illustration. Principles of acoustic-system calibration are elaborated.

K. G. Foote, Woods Hole Staff

2.684 Wave Scattering by Rough Surfaces and Inhomogeneous Media

Prereq: 2.066 or permission of instrctor G (Fall) Not offered regularly; consult department 3-0-9 units Can be repeated for credit.

An advanced-level subject designed to give students a working knowledge of current techniques in this area. Material is presented principally in the context of ocean acoustics, but can be used in other acoustic and electromagnetic applications. Includes fundamentals of wave propagation through, and/or scattering by: random media, extended coherent structures, rough surfaces, and discrete scatterers.

T. K. Stanton, A. C. Lavery, Woods Hole Staff

2.687 Time Series Analysis and System Identification

Prereq: 6.3010 and 18.06 G (Fall, Spring) Not offered regularly; consult department 3-0-9 units Can be repeated for credit.

Covers matched filtering, power spectral (PSD) estimation, and adaptive signal processing / system identification algorithms. Algorithm development is framed as an optimization problem, and optimal and approximate solutions are described. Reviews time-varying systems, first and second moment representations of stochastic processes, and state-space models. Also covers algorithm derivation, performance analysis, and robustness to modeling errors. Algorithms for PSD estimation, the LMS and RLS algorithms, and the Kalman Filter are treated in detail.

J. C. Preisig, Woods Hole Staff

2.688 Principles of Oceanographic Instrument Systems -- Sensors and Measurements

Prereq: 2.671 and 18.075 Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Fall) 3-3-6 units

Introduces theoretical and practical principles of design of oceanographic sensor systems. Transducer characteristics for acoustic, current, temperature, pressure, electric, magnetic, gravity, salinity, velocity, heat flow, and optical devices. Limitations on these devices imposed by ocean environment. Signal conditioning and recording; noise, sensitivity, and sampling limitations; standards. Principles of state-of-the-art systems being used in physical oceanography, geophysics, submersibles, acoustics discussed in lectures by experts in these areas. Day cruises in local waters during which the students will prepare, deploy and analyze observations from standard oceanographic instruments constitute the lab work for this subject.

H. Singh, R. Geyer, A. Michel

2.689[J] Projects in Oceanographic Engineering

Same subject as 1.699[J] Prereq: Permission of instructor G (Fall, Spring, Summer) Units arranged [P/D/F] Can be repeated for credit.

Projects in oceanographic engineering, carried out under supervision of Woods Hole Oceanographic Institution staff. Given at Woods Hole Oceanographic Institution.

J. Preisig, Woods Hole Staff

2.690 Corrosion in Marine Engineering

Prereq: 3.012 and permission of instructor G (Summer) 3-0-3 units

Introduction to forms of corrosion encountered in marine systems material selection, coatings and protection systems. Case studies and causal analysis developed through student presentations.

J. Page, T. Eagar

Naval Architecture

2.700 principles of naval architecture.

Subject meets with 2.701 Prereq: 2.002 U (Fall) 4-2-6 units

Presents principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damage stability, hull structure strength calculations and ship resistance. Introduces computer-aided naval ship design and analysis tools. Projects include analysis of ship lines drawings, calculation of ship hydrostatic characteristics, analysis of intact and damaged stability, ship model testing, and hull structure strength calculations. Students taking graduate version complete additional assignments.

R. Bebermeyer, P. D. Sclavounos

2.701 Principles of Naval Architecture

Subject meets with 2.700 Prereq: 2.002 G (Fall) 4-2-6 units

R. Bebermeyer, P. Sclavounuos

2.702 Systems Engineering and Naval Ship Design

Prereq: 2.701 G (Spring) 3-3-6 units

Introduces principles of systems engineering and ship design with an overview of naval ship design and acquisition processes, requirements setting, formulation of a systematic plan, design philosophy and constraints, formal decision making methods, selection criteria, optimization, variant analysis, trade-offs, analysis of ship design trends, risk, and cost analysis. Emphasizes the application of principles through completion of a design exercise and project.

R. Bebermeyer, A. Gillespy

2.703 Principles of Naval Ship Design

Prereq: 2.082 , 2.20 , 2.611 , and 2.702 G (Fall) 4-2-6 units

Covers the design of surface ship platforms for naval applications. Includes topics such as hull form selection and concept design synthesis, topside and general arrangements, weight estimation, and technical feasibility analyses (including strength, stability, seakeeping, and survivability.). Practical exercises involve application of design principles and utilization of advanced computer-aided ship design tools.

J. Harbour, J. Page

2.704 Projects in Naval Ship Conversion Design

Prereq: 2.703 G (IAP, Spring) 1-6-5 units

Focuses on conversion design of a naval ship. A new mission requirement is defined, requiring significant modification to an existing ship. Involves requirements setting, design plan formulation and design philosophy, and employs formal decision-making methods. Technical aspects demonstrate feasibility and desirability. Includes formal written and verbal reports and team projects.

2.705 Projects in New Concept Naval Ship Design

Prereq: 2.704 G (Fall, Spring) Units arranged Can be repeated for credit.

Focus on preliminary design of a new naval ship, fulfilling a given set of mission requirements. Design plan formulation, system level trade-off studies, emphasizes achieving a balanced design and total system integration. Formal written and oral reports. Team projects extend over three terms.

R. Bebermeyer, R. Jonart

2.707 Submarine Structural Acoustics

Prereq: 2.066 G (Spring; first half of term) Not offered regularly; consult department 2-0-4 units

Introduction to the acoustic interaction of submerged structures with the surrounding fluid. Fluid and elastic wave equations. Elastic waves in plates. Radiation and scattering from planar structures as well as curved structures such as spheres and cylinders. Acoustic imaging of structural vibrations. Students can take 2.085 in the second half of term.

2.708 Traditional Naval Architecture Design

Prereq: None G (IAP) Not offered regularly; consult department 2-0-1 units

Week-long intensive introduction to traditional design methods in which students hand draw a lines plan of a N. G. Herreshoff (MIT Class of 1870) design based on hull shape offsets taken from his original design model. After completing the plan, students then carve a wooden half-hull model of the boat design. Covers methods used to develop hull shape analysis data from lines plans. Provides students with instruction in safe hand tool use and how to transfer their lines to 3D in the form of their model. Limited to 15.

K. Hasselbalch, J. Harbour

2.71 Optics

Subject meets with 2.710 Prereq: ( Physics II (GIR) , 2.004 , and 18.03 ) or permission of instructor U (Fall) 3-0-9 units

Introduction to optical science with elementary engineering applications. Geometrical optics: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Wave optics: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Emphasis on analytical and numerical tools used in optical design. Graduate students are required to complete additional assignments with stronger analytical content, and an advanced design project.

G. Barbastathis, P. T. So

2.710 Optics

Subject meets with 2.71 Prereq: ( Physics II (GIR) , 2.004 , and 18.03 ) or permission of instructor G (Fall) 3-0-9 units

2.715[J] Optical Microscopy and Spectroscopy for Biology and Medicine

Same subject as 20.487[J] Prereq: Permission of instructor G (Spring) Not offered regularly; consult department 3-0-9 units

Introduces the theory and the design of optical microscopy and its applications in biology and medicine. The course starts from an overview of basic optical principles allowing an understanding of microscopic image formation and common contrast modalities such as dark field, phase, and DIC. Advanced microscopy imaging techniques such as total internal reflection, confocal, and multiphoton will also be discussed. Quantitative analysis of biochemical microenvironment using spectroscopic techniques based on fluorescence, second harmonic, Raman signals will be covered. We will also provide an overview of key image processing techniques for microscopic data.

P. T. So, C. Sheppard

2.717 Optical Engineering

Prereq: 2.710 or permission of instructor G (Spring) Not offered regularly; consult department 3-0-9 units

Theory and practice of optical methods in engineering and system design. Emphasis on diffraction, statistical optics, holography, and imaging. Provides engineering methodology skills necessary to incorporate optical components in systems serving diverse areas such as precision engineering and metrology, bio-imaging, and computing (sensors, data storage, communication in multi-processor systems). Experimental demonstrations and a design project are included.

P. T. So, G. Barbastathis

2.718 Photonic Materials

Subject meets with 2.719 Prereq: 2.003[J] , 8.03 , 6.2370 , or permission of instructor U (Spring) 3-0-9 units

Provides a review of Maxwell's equations and the Helmholtz wave equation. Optical devices: waveguides and cavities, phase and group velocity, causality, and scattering. Light-matter interaction in bulk, surface, and subwavelength-structured matter. Effective media, dispersion relationships, wavefronts and rays, eikonal description of light propagation, phase singularities. Transformation optics, gradient effective media. Includes description of the experimental tools for realization and measurement of photonic materials and effects. Students taking graduate version complete additional assignments.

G. Barbastathis, N. Fang

2.719 Photonic Materials

Subject meets with 2.718 Prereq: 2.003[J] , 8.03 , 6.2370 , or permission of instructor G (Spring) 3-0-9 units

2.70 FUNdaMENTALS of Precision Product Design

Subject meets with 2.77 Prereq: 2.008 U (Fall) 3-3-6 units

Examines design, selection, and combination of machine elements to produce a robust precision system. Introduces process, philosophy and physics-based principles of design to improve/enable renewable power generation, energy efficiency, and manufacturing productivity. Topics include linkages, power transmission, screws and gears, actuators, structures, joints, bearings, error apportionment, and error budgeting. Considers each topic with respect to its physics of operation, mechanics (strength, deformation, thermal effects) and accuracy, repeatability, and resolution. Includes guest lectures from practicing industry and academic leaders. Students design, build, and test a small benchtop precision machine, such as a heliostat for positioning solar PV panels or a two or three axis machine. Prior to each lecture, students review the pre-recorded detailed topic materials and then converge on what parts of the topic they want covered in extra depth in lecture. Students are assessed on their preparation for and participation in class sessions. Students taking graduate version complete additional assignments. Enrollment limited.

2.77 FUNdaMENTALS of Precision Product Design

Subject meets with 2.70 Prereq: 2.008 G (Fall) 3-3-6 units

2.72 Elements of Mechanical Design

Subject meets with 2.720 Prereq: 2.008 and ( 2.005 or 2.051); Coreq: 2.671 U (Spring) 3-3-6 units

Advanced study of modeling, design, integration, and best practices for use of machine elements, such as bearings, bolts, belts, flexures, and gears. Modeling and analysis is based upon rigorous application of physics, mathematics, and core mechanical engineering principles, which are reinforced via laboratory experiences and a design project in which students model, design, fabricate, and characterize a mechanical system that is relevant to a real-world application. Activities and quizzes are directly related to, and coordinated with, the project deliverables. Develops the ability to synthesize, model and fabricate a design subject to engineering constraints (e.g., cost, time, schedule). Students taking graduate version complete additional assignments. Enrollment limited.

M. L. Culpepper

2.720 Elements of Mechanical Design

Subject meets with 2.72 Prereq: Permission of instructor G (Spring) 3-3-6 units

Advanced study of modeling, design, integration, and best practices for use of machine elements, such as bearings, bolts, belts, flexures, and gears. Modeling and analysis is based upon rigorous application of physics, mathematics, and core mechanical engineering principles, which are reinforced via laboratory experiences and a design project in which students model, design, fabricate, and characterize a mechanical system that is relevant to a real-world application. Activities and quizzes are directly related to, and coordinated with, the project deliverables. Develops the ability to synthesize, model and fabricate a design subject to engineering constraints (e.g., cost, time, schedule). Students taking graduate version complete additional assignments.

2.722[J] D-Lab: Design

Same subject as EC.720[J] Prereq: 2.670 or permission of instructor U (Spring) 3-0-9 units

See description under subject EC.720[J] . Enrollment limited by lottery; must attend first class session.

2.7231[J] Introduction to Design Thinking and Innovation in Engineering

Same subject as 6.9101[J] , 16.6621[J] Prereq: None U (Fall, Spring; first half of term) 2-0-1 units

See description under subject 6.9101[J] . Enrollment limited to 25; priority to first-year students.

2.723A Design Thinking and Innovation Leadership for Engineers

Engineering School-Wide Elective Subject. Offered under: 2.723A , 6.910A , 16.662A Prereq: None U (Fall, Spring; first half of term) 2-0-1 units

See description under subject 6.910A .

2.723B Design Thinking and Innovation Project

Engineering School-Wide Elective Subject. Offered under: 2.723B , 6.910B , 16.662B Prereq: 6.910A U (Fall, Spring; second half of term) 2-0-1 units

See description under subject 6.910B .

2.729[J] D-Lab: Design for Scale

Same subject as EC.729[J] Subject meets with 2.789[J] , EC.797[J] Prereq: None. Coreq: 2.008 ; or permission of instructor U (Fall) 3-2-7 units

See description under subject EC.729[J] .

2.733 Engineering Systems Design

Subject meets with 2.013 Prereq: ( 2.001 , 2.003[J] , ( 2.005 or 2.051), and ( 2.00B , 2.670 , or 2.678 )) or permission of instructor Acad Year 2023-2024: G (Fall) Acad Year 2024-2025: Not offered 0-6-6 units

Focuses on the design of engineering systems to satisfy stated performance, stability, and/or control requirements. Emphasizes individual initiative, application of fundamental principles, and the compromises inherent in the engineering design process. Culminates in the design of an engineering system, typically a vehicle or other complex system. Includes instruction and practice in written and oral communication through team presentation, design reviews, and written reports. Students taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity.

2.734 Engineering Systems Development

Subject meets with 2.014 Prereq: ( 2.001 , 2.003[J] , ( 2.005 or 2.051), and ( 2.00B , 2.670 , or 2.678 )) or permission of instructor G (Spring) 0-6-6 units

Focuses on the implementation and operation of engineering systems. Emphasizes system integration and performance verification using methods of experimental inquiry. Students refine their subsystem designs and the fabrication of working prototypes. Includes experimental analysis of subperformance and comparison with physical models of performance and with design goals. component integration into the full system, with detailed analysis and operation of the complete vehicle in the laboratory and in the field. Includes written and oral reports. Students carry out formal reviews of the overall system design. Instruction and practice in oral and written communication provided. Students taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity.

2.737 Mechatronics

Prereq: 6.2000 and ( 2.14 , 6.3100 , or 16.30 ) Acad Year 2023-2024: G (Fall) Acad Year 2024-2025: Not offered 3-5-4 units

Introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. Significant laboratory-based design experiences form subject's core. Final project. Topics include: low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems. Limited to 20.

2.739[J] Product Design and Development

Same subject as 15.783[J] Prereq: 2.009 , 15.761 , 15.778 , 15.814 , or permission of instructor G (Spring) 3-3-6 units

See description under subject 15.783[J] . Engineering students accepted via lottery based on WebSIS pre-registration.

S. Eppinger, M. C. Yang

2.74 Bio-inspired Robotics

Subject meets with 2.740 Prereq: 2.004 or permission of instructor U (Fall) 3-1-8 units

Interdisciplinary approach to bio-inspired design, with emphasis on principle extraction applicable to various robotics research fields, such as robotics, prosthetics, and human assistive technologies. Focuses on three main components: biomechanics, numerical techniques that allow multi-body dynamics simulation with environmental interaction and optimization, and basic robotics techniques and implementation skills. Students integrate the components into a final robotic system project of their choosing through which they must demonstrate their understanding of dynamics and control and test hypothesized design principles. Students taking graduate version complete additional assignments. Enrollment may be limited due to laboratory capacity.

2.740 Bio-inspired Robotics

Subject meets with 2.74 Prereq: 2.004 or permission of instructor G (Fall) 3-3-6 units

Interdisciplinary approach to bio-inspired design, with emphasis on principle extraction applicable to various robotics research fields, such as robotics, prosthetics, and human assistive technologies. Focuses on three main components: biomechanics, numerical techniques that allow multi-body dynamics simulation with environmental interaction and optimization, and basic robotics techniques and implementation skills. Students integrate the components into a final robotic system project of their choosing through which they must demonstrate their understanding of dynamics and control and test hypothesized design principles. Students taking graduate version complete additional assignments. Enrollment may be limited due to lab capacity.

2.744 Product Design

Prereq: 2.009 G (Spring) Not offered regularly; consult department 3-0-9 units

Project-centered subject addressing transformation of ideas into successful products which are properly matched to the user and the market. Students are asked to take a more complete view of a new product and to gain experience with designs judged on their aesthetics, ease of use, and sensitivities to the realities of the marketplace. Lectures on modern design process, industrial design, visual communication, form-giving, mass production, marketing, and environmentally conscious design.

2.75[J] Medical Device Design

Same subject as 6.4861[J] , HST.552[J] Subject meets with 2.750[J] , 6.4860[J] Prereq: 2.008 , 6.2040 , 6.2050 , 6.2060 , 22.071 , or permission of instructor G (Spring) 3-3-6 units

Provides an intense project-based learning experience around the design of medical devices with foci ranging from mechanical to electro mechanical to electronics. Projects motivated by real-world clinical challenges provided by sponsors and clinicians who also help mentor teams. Covers the design process, project management, and fundamentals of mechanical and electrical circuit and sensor design. Students work in small teams to execute a substantial term project, with emphasis placed upon developing creative designs — via a deterministic design process — that are developed and optimized using analytical techniques. Includes mandatory lab. Instruction and practice in written and oral communication provided. Students taking graduate version complete additional assignments. Enrollment limited.

A. H. Slocum, E. Roche, N. C. Hanumara, G. Traverso, A. Pennes

2.750[J] Medical Device Design

Same subject as 6.4860[J] Subject meets with 2.75[J] , 6.4861[J] , HST.552[J] Prereq: 2.008 , 6.2040 , 6.2050 , 6.2060 , 22.071 , or permission of instructor U (Spring) 3-3-6 units

Provides an intense project-based learning experience around the design of medical devices with foci ranging from mechanical to electro mechanical to electronics. Projects motivated by real-world clinical challenges provided by sponsors and clinicians who also help mentor teams. Covers the design process, project management, and fundamentals of mechanical and electrical circuit and sensor design. Students work in small teams to execute a substantial term project, with emphasis placed upon developing creative designs -- via a deterministic design process -- that are developed and optimized using analytical techniques. Includes mandatory lab. Instruction and practice in written and oral communication provided. Students taking graduate version complete additional assignments. Enrollment limited.

A. H. Slocum, E. Roche, N. C. Hanumara, G. Traverso, A. Pennes

2.752 Development of Mechanical Products

Subject meets with 2.753 Prereq: 2.009 , 2.750[J] , or permission of instructor U (Spring) Not offered regularly; consult department 3-0-9 units

Focuses on evolving a product from proof-of-concept to beta prototype: Includes team building, project planning, budgeting, resource planning; models for scaling, tolerancing and reliability, patents, business planning. Students/teams start with a proof-of-concept product they bring to class or select from projects provided by instructor. In lieu of taking 12 units of 2.THU , Course 2 majors taking 2.752 may write a bachelor's thesis that documents their contributions to the product developed in the team project. Students taking the graduate version complete additional assignments. Enrollment limited; preference to Course 2 majors and minors.

2.753 Development of Mechanical Products

Subject meets with 2.752 Prereq: 2.009 , 2.750[J] , or permission of instructor G (Spring) Not offered regularly; consult department 3-0-9 units

Focuses on evolving a product from proof-of-concept to beta prototype: Includes team building, project planning, budgeting, resource planning; models for scaling, tolerancing and reliability, patents, business planning. Students/teams start with a proof-of-concept product they bring to class or select from projects provided by instructor. In lieu of taking 12 units of 2.THU , Course 2 majors taking 2.752 may write a bachelor's thesis that documents their contributions to the product developed in the team project. Students taking the graduate version complete additional assignments. Enrollment limited.

2.76 Global Engineering

Subject meets with 2.760 Prereq: 2.008 or permission of instructor G (Fall) 3-0-9 units

Combines rigorous engineering theory and user-centered product design to create technologies for developing and emerging markets. Covers machine design theory to parametrically analyze technologies; bottom-up/top-down design processes; engagement of stakeholders in the design process; socioeconomic factors that affect adoption of products; and developing/emerging market dynamics and their effect on business and technology. Includes guest lectures from subject matter experts in relevant fields and case studies on successful and failed technologies. Student teams apply course material to term-long projects to create new technologies, developed in collaboration with industrial partners and other stakeholders in developing/emerging markets. Students taking graduate version complete additional assignments.

2.760 Global Engineering

Subject meets with 2.76 Prereq: 2.008 or permission of instructor U (Fall) 3-0-9 units

2.771[J] D-Lab: Supply Chains

Same subject as 15.772[J] , EC.733[J] Subject meets with 2.871 Prereq: None U (Spring) Not offered regularly; consult department 3-3-6 units

See description under subject 15.772[J] .

S. C. Graves

2.772[J] Thermodynamics of Biomolecular Systems

Same subject as 20.110[J] Prereq: ( Biology (GIR) , Calculus II (GIR) , Chemistry (GIR) , and Physics I (GIR) ) or permission of instructor U (Fall) 5-0-7 units. REST

See description under subject 20.110[J] .

M. Birnbaum, C. Voigt

2.777 Large and Complex Systems Design and Concept Development

Subject meets with 2.778 Prereq: 2.00B , 2.007 , or permission of instructor U (Fall) 3-0-9 units

Examines structured principles and processes to develop concepts for large and complex systems. Term projects introduce students to large-scale system development with several areas of emphasis, including idea generation, concept development and refinement, system-level thinking, briefing development and presentation, and proposal generation. Interactive lectures and presentations guide students throughout the course to develop and deliver team presentations focused on solving large and complex problems. Includes a semester-long project in which students apply design tools/processes to solve a specific problem. Students taking graduate version complete the project individually.

2.778 Large and Complex Systems Design and Concept Development

Subject meets with 2.777 Prereq: Permission of instructor G (Fall) 3-0-9 units

Examines structured principles and processes to develop concepts for large and complex systems. Term projects introduce students to large-scale system development with several areas of emphasis, including idea generation, concept development and refinement, system-level thinking, briefing development and presentation, and proposal generation. Interactive lectures and presentations guide students throughout the course to develop and deliver individual and team presentations focused on solving large and complex problems. Includes a semester-long project in which students apply design tools/processes to solve a specific problem. Students taking graduate version complete project individually. Limited enrollment.

2.78[J] Principles and Practice of Assistive Technology

Same subject as 6.4530[J] , HST.420[J] Prereq: Permission of instructor U (Fall) Not offered regularly; consult department 2-4-6 units

See description under subject 6.4530[J] . Enrollment may be limited.

R. C. Miller, J. E. Greenberg, J. J. Leonard

2.782[J] Design of Medical Devices and Implants

Same subject as HST.524[J] Prereq: ( Biology (GIR) , Chemistry (GIR) , and Physics I (GIR) ) or permission of instructor G (Spring) 3-0-9 units

Solution of clinical problems by use of implants and other medical devices. Systematic use of cell-matrix control volumes. The role of stress analysis in the design process. Anatomic fit: shape and size of implants. Selection of biomaterials. Instrumentation for surgical implantation procedures. Preclinical testing for safety and efficacy: risk/benefit ratio assessment. Evaluation of clinical performance: design of clinical trials. Project materials drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

I. V. Yannas, M. Spector

2.785[J] Cell-Matrix Mechanics

Same subject as HST.523[J] Prereq: ( Biology (GIR) , Chemistry (GIR) , and 2.001 ) or permission of instructor G (Fall) Not offered regularly; consult department 3-0-9 units

Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.

2.787[J] Tissue Engineering and Organ Regeneration

Same subject as HST.535[J] Prereq: ( Biology (GIR) , Chemistry (GIR) , and Physics I (GIR) ) or permission of instructor G (Fall) 3-0-9 units

See description under subject HST.535[J] .

M. Spector, I. V. Yannas

2.788 Mechanical Engineering and Design of Living Systems

Prereq: None G (Fall) 4-2-6 units

For students interested in research at the interface of mechanical engineering, biology, and materials science. Specific emphasis lies on interfacing living systems with engineered materials and devices, and on engineering living system behavior.

M. Kolle, M. Guo

2.789[J] D-Lab: Design for Scale

Same subject as EC.797[J] Subject meets with 2.729[J] , EC.729[J] Prereq: None. Coreq: 2.008 ; or permission of instructor G (Fall) 3-2-7 units

See description under subject EC.797[J] .

M. Yang, H. Quintus-Bosz, S. Grama, K. Bergeron

2.79[J] Biomaterials: Tissue Interactions

Same subject as HST.522[J] Prereq: ( Biology (GIR) , Chemistry (GIR) , and Physics I (GIR) ) or permission of instructor G (Fall) Not offered regularly; consult department 3-0-9 units

Principles of materials science and cell biology underlying the development and implementation of biomaterials for the fabrication of medical devices/implants, including artificial organs and matrices for tissue engineering and regenerative medicine. Employs a conceptual model, the "unit cell process for analysis of the mechanisms underlying wound healing and tissue remodeling following implantation of biomaterials/devices in various organs, including matrix synthesis, degradation, and contraction. Methodology of tissue and organ regeneration. Discusses methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Design of implants and prostheses based on control of biomaterials-tissue interactions. Comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to case studies. Criteria for restoration of physiological function for tissues and organs.

2.791[J] Cellular Neurophysiology and Computing

Same subject as 6.4810[J] , 9.21[J] , 20.370[J] Subject meets with 2.794[J] , 6.4812[J] , 9.021[J] , 20.470[J] , HST.541[J] Prereq: ( Physics II (GIR) , 18.03 , and ( 2.005 , 6.2000 , 6.3000 , 10.301 , or 20.110[J] )) or permission of instructor U (Spring) 5-2-5 units

See description under subject 6.4810[J] . Preference to juniors and seniors.

J. Han, T. Heldt

2.792[J] Quantitative and Clinical Physiology

Same subject as 6.4820[J] , HST.542[J] Subject meets with 2.796[J] , 6.4822[J] Prereq: Physics II (GIR) , 18.03 , or permission of instructor U (Fall) 4-2-6 units

See description under subject 6.4820[J] .

T. Heldt, R. G. Mark

2.793[J] Fields, Forces and Flows in Biological Systems

Same subject as 6.4830[J] , 20.330[J] Prereq: Biology (GIR) , Physics II (GIR) , and 18.03 U (Spring) 4-0-8 units

See description under subject 20.330[J] .

J. Han, S. Manalis

2.794[J] Cellular Neurophysiology and Computing

Same subject as 6.4812[J] , 9.021[J] , 20.470[J] , HST.541[J] Subject meets with 2.791[J] , 6.4810[J] , 9.21[J] , 20.370[J] Prereq: ( Physics II (GIR) , 18.03 , and ( 2.005 , 6.2000 , 6.3000 , 10.301 , or 20.110[J] )) or permission of instructor G (Spring) 5-2-5 units

See description under subject 6.4812[J] .

2.795[J] Fields, Forces, and Flows in Biological Systems

Same subject as 6.4832[J] , 10.539[J] , 20.430[J] Prereq: Permission of instructor G (Fall) 3-0-9 units

See description under subject 20.430[J] .

M. Bathe, A. J. Grodzinsky

2.796[J] Quantitative Physiology: Organ Transport Systems

Same subject as 6.4822[J] Subject meets with 2.792[J] , 6.4820[J] , HST.542[J] Prereq: 6.4810[J] and ( 2.006 or 6.2300 ) G (Fall) 4-2-6 units

See description under subject 6.4822[J] .

2.797[J] Molecular, Cellular, and Tissue Biomechanics

Same subject as 3.053[J] , 6.4840[J] , 20.310[J] Subject meets with 2.798[J] , 3.971[J] , 6.4842[J] , 10.537[J] , 20.410[J] Prereq: Biology (GIR) and 18.03 U (Spring) 4-0-8 units

Develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels. Students taking graduate version complete additional assignments.

M. Bathe, K. Ribbeck, P. T. So

2.798[J] Molecular, Cellular, and Tissue Biomechanics

Same subject as 3.971[J] , 6.4842[J] , 10.537[J] , 20.410[J] Subject meets with 2.797[J] , 3.053[J] , 6.4840[J] , 20.310[J] Prereq: Biology (GIR) and 18.03 G (Spring) 3-0-9 units

2.799 The Cell as a Machine

Prereq: 5.07[J] , 7.05 , or 18.03 G (Fall) Not offered regularly; consult department 3-3-6 units

Examines a variety of essential cellular functions from the perspective of the cell as a machine. Includes phenomena such as nuclear organization, protein synthesis, cell and membrane mechanics, cell migration, cell cycle control, cell transformation. Lectures are provided by video twice per week; live 3-hour recitation one evening per week. Course is taken simultaneously by students at multiple universities; homework and take-home exams common to all students. Preference to students in Courses 2 and 20.

R. Kamm, M. Sheetz, H. Yu

Manufacturing

2.810 manufacturing processes and systems.

Prereq: 2.001 , 2.006 , and 2.008 G (Fall) 3-3-6 units

Introduction to manufacturing processes and manufacturing systems including assembly, machining, injection molding, casting, thermoforming, and more. Emphasis on the physics and randomness and how they influence quality, rate, cost, and flexibility. Attention to the relationship between the process and the system, and the process and part design. Project (in small groups) requires fabrication (and some design) of a product using several different processes (as listed above). Enrollment may be limited due to laboratory constraints; preference given to MechE students and students who need to satisfy degree requirements.

J. Hart, D. Wendell, W. Seering, J. Liu

2.812 Solving for Carbon Neutrality at MIT

Prereq: None Acad Year 2023-2024: Not offered Acad Year 2024-2025: U (Spring) 3-3-6 units

Working in teams, students address the problem of reducing MIT's greenhouse gas emissions in a manner consistent with the climate goals of maintaining our planet in a suitable regime to support human society and the environment. Solution scenarios include short-, middle- and long-term strategies. Experts from MIT's faculty and operations staff, as well as outside experts who address the multidisciplinary features of the problem guide solutions. These include climate science, ethics, carbon accounting, cost estimating, MIT's energy supply, energy demand, and infrastructure, new technologies, financial instruments, electricity markets, policy, human behavior, and regulation.Develops skills to address carbon neutrality at other universities, and at other scales, including cities and nations. Students taking graduate version complete additional assignments.

T. Gutowski, J. Newman

2.813 Energy, Materials, and Manufacturing

Subject meets with 2.83 Prereq: 2.008 or permission of instructor Acad Year 2023-2024: U (Spring) Acad Year 2024-2025: Not offered 3-0-9 units

Introduction to the major dilemma that faces manufacturing and society for the 21st century: how to support economic development while protecting the environment. Subject addresses industrial ecology, materials flows, life-cycle analysis, thermodynamic analysis and exergy accounting, manufacturing process performance, product design analysis, design for the environment, recycling and ecological economics. Combines lectures and group discussions of journal articles and selected literature, often with opposing views. Graduate students complete term-long project with report required for graduate credit.

T. G. Gutowski

2.814 Exploring Sustainability at Different Scales (New)

Subject meets with 1.834[J] , 2.834[J] Prereq: None U (Fall) 3-0-9 units

Develops environmental accounting tools including energy, carbon, materials, land use, and possibly others, from small scales (e.g., products and processes) to larger scales, (e.g., companies, nations and global) to reveal how reoccurring human behavior patterns have dominated environmental outcomes. Involves visiting experts and readings in areas such as ethics, economics, governance, and development to frame core issues in human relationship to the environment and future societies. Explores how local actions, including engineering interventions and behavior change, play out at larger scales associated with the concept of sustainability, and how local actions may be modified to realize sustainability. Class is participatory and includes an exploratory project. Students taking graduate version complete additional assignments. Limited to 25.

T. Gutowski

2.821[J] Structural Materials

Same subject as 3.371[J] Prereq: Permission of instructor G (Fall, Summer) 3-0-9 units Can be repeated for credit. Credit cannot also be received for 3.171

See description under subject 3.371[J] .

D. Baskin, A. Slocum

2.83 Energy, Materials and Manufacturing

Subject meets with 2.813 Prereq: 2.008 or permission of instructor Acad Year 2023-2024: G (Spring) Acad Year 2024-2025: Not offered 3-0-9 units

2.830[J] Control of Manufacturing Processes

Same subject as 6.6630[J] Prereq: 2.008 , 6.2600[J] , or 6.3700 G (Fall) 3-0-9 units

Statistical modeling and control in manufacturing processes. Use of experimental design and response surface modeling to understand manufacturing process physics. Defect and parametric yield modeling and optimization. Forms of process control, including statistical process control, run by run and adaptive control, and real-time feedback control. Application contexts include semiconductor manufacturing, conventional metal and polymer processing, and emerging micro-nano manufacturing processes.

D. E. Hardt, D. S. Boning

2.832 Solving for Carbon Neutrality at MIT

Prereq: None Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Spring) 3-3-6 units

2.834[J] Exploring Sustainability at Different Scales (New)

Same subject as 1.834[J] Subject meets with 2.814 Prereq: None G (Fall) 3-0-9 units

2.851[J] System Optimization and Analysis for Operations

Same subject as 15.066[J] Prereq: Calculus II (GIR) G (Summer) 4-0-8 units

See description under subject 15.066[J] . Restricted to Leaders for Global Operations students.

2.853 Introduction to Manufacturing Systems

Subject meets with 2.854 Prereq: 2.008 U (Fall) 3-0-9 units

Provides ways to analyze manufacturing systems in terms of material flow and storage, information flow, capacities, and times and durations of events. Fundamental topics include probability, inventory and queuing models, forecasting, optimization, process analysis, and linear and dynamic systems. Factory planning and scheduling topics include flow planning, bottleneck characterization, buffer and batch-size tactics, seasonal planning, and dynamic behavior of production systems. Graduate students are required to complete additional assignments with stronger analytical content.

S. B. Gershwin

2.854 Introduction to Manufacturing Systems

Subject meets with 2.853 Prereq: Undergraduate mathematics G (Fall) 3-0-9 units

Provides ways to analyze manufacturing systems in terms of material flow and storage, information flow, capacities, and times and durations of events. Fundamental topics include probability, inventory and queuing models, forecasting, optimization, process analysis, and linear and dynamic systems. Factory planning and scheduling topics include flow planning, bottleneck characterization, buffer and batch-size tactics, seasonal planning, and dynamic behavior of production systems. Graduate students are required to complete additional assignments.

2.871 D-Lab: Supply Chains

Subject meets with 2.771[J] , 15.772[J] , EC.733[J] Prereq: None G (Spring) Not offered regularly; consult department 3-3-6 units

Introduces concepts of supply chain design and planning with a focus on supply chains for products destined to improve quality of life in developing countries. Topics include demand estimation, process analysis and improvement, facility location and capacity planning, inventory management, and supply chain coordination. Also covers issues specific to emerging markets, such as sustainable supply chains, choice of distribution channels, and how to account for the value-adding role of a supply chain. Students conduct D-Lab-based projects on supply chain design or improvement. Students taking graduate version will complete additional assignments.

2.874[J] Process Data Analytics

Same subject as 10.354[J] Subject meets with 2.884[J] , 10.554[J] Prereq: 18.03 or permission of instructor Acad Year 2023-2024: Not offered Acad Year 2024-2025: U (Fall) 4-0-8 units

See description under subject 10.354[J] .

R. D. Braatz, B. Anthony

2.884[J] Process Data Analytics

Same subject as 10.554[J] Subject meets with 2.874[J] , 10.354[J] Prereq: None Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Fall) 4-0-8 units

See description under subject 10.554[J] .

2.888 Professional Seminar in Global Manufacturing Innovation and Entrepreneurship

Prereq: None G (Spring) 2-0-1 units

Covers a broad range of topics in modern manufacturing, from models and structures for 21st-century operations, to case studies in leadership from the shop floor to the executive office. Also includes global perspectives from Asia, Europe and North America, with guest speakers from all three regions. Explores opportunities for new ventures in manufacturing. Intended primarily for Master of Engineering in Manufacturing students.

D. E. Hardt, S. B. Gershwin

2.890[J] Global Operations Leadership Seminar

Same subject as 10.792[J] , 15.792[J] , 16.985[J] Prereq: None G (Fall, Spring) 2-0-0 units Can be repeated for credit.

See description under subject 15.792[J] . Preference to LGO students.

Engineering Management

2.351[j] introduction to making and hardware ventures.

Same subject as 15.351[J] Prereq: Permission of instructor G (Spring) 3-0-3 units

See description under subject 15.351[J] . Enrollment limited; application required.

C. Lowell, M. Kenney, M. Culpepper

2.900 Ethics for Engineers

Engineering School-Wide Elective Subject. Offered under: 1.082 , 2.900 , 6.9320 , 10.01 , 16.676 , 22.014 Subject meets with 6.9321 , 20.005 Prereq: None U (Fall, Spring) 2-0-4 units

See description under subject 10.01 .

D. A. Lauffenberger, B. L. Trout

2.907[J] Innovation Teams

Same subject as 10.807[J] , 15.371[J] Prereq: None G (Fall) 4-4-4 units

See description under subject 10.807[J] .

L. Perez-Breva, D. Hart

2.912[J] Venture Engineering

Same subject as 3.085[J] , 15.373[J] Prereq: None U (Spring) 3-0-9 units

Provides an integrated approach to the development and growth of new innovative ventures. Intended for students who seek to leverage their engineering and science background through innovation-driven entrepreneurship. Emphasizes the concept that innovation-driven entrepreneurs must make a set of interdependent choices under conditions of high uncertainty, and demonstrates that venture engineering involves reducing uncertainty through a structured process of experimental learning and staged commitments. Provides deep understanding of the core technical, customer, and strategic choices and challenges facing start-up innovators, and a synthetic framework for the development and implementation of ventures in dynamic environments.

S. Stern, E. Fitzgerald

2.916[J] Money for Startups

Same subject as 10.407[J] Prereq: None G (Spring; second half of term) 2-0-4 units

See description under subject 10.407[J] .

S. Loessberg, D. P. Hart

2.96 Management in Engineering

Engineering School-Wide Elective Subject. Offered under: 2.96 , 6.9360 , 10.806 , 16.653 Prereq: None U (Fall) 3-1-8 units

Introduction and overview of engineering management. Financial principles, management of innovation, technical strategy and best management practices. Case study method of instruction emphasizes participation in class discussion. Focus is on the development of individual skills and management tools. Restricted to juniors and seniors.

H. S. Marcus, J.-H. Chun

2.961 Management in Engineering

Prereq: None G (Fall) 3-1-8 units

Introduction and overview of engineering management. Financial principles, management of innovation, technical strategy and best management practices. Case study method of instruction emphasizes participation in class discussion. Focus is on the development of individual skills and management tools.

J.-H. Chun, H. S. Marcus

2.965[J] Global Supply Chain Management

Same subject as 1.265[J] , 15.765[J] , SCM.265[J] Prereq: 15.761 , 15.778 , SCM.260[J] , SCM.261[J] , or permission of instructor G (Spring) Not offered regularly; consult department 2-0-4 units

See description under subject SCM.265[J] .

Advanced Topics and Special Subjects

2.98 sports technology: engineering & innovation.

Subject meets with 2.980 Prereq: None G (Spring) 2-2-2 units

Examines the future of sports technology across technical disciplines, including mechanical design, biomechanics, quantified self, sports analytics, and business strategies. Includes visits by leaders in the field to discuss various industries, career pathways, and opportunities for innovation in the field. Projects explore and potentially kickoff larger research and/or entrepreneurial initiatives.

A. Hosoi, C. Chase

2.980 Sports Technology: Engineering & Innovation

Subject meets with 2.98 Prereq: None U (Spring) 2-2-8 units

2.981 New England Coastal Ecology

Prereq: None U (IAP) 2-0-1 units

Provides exposure to marine communities found along the coast of New England and how they fit into global patterns. Focuses on the ecology of salt marshes and rocky shores, and the biology of plants and animals that live in these complex habitats. Prepares students to recognize common inhabitants of these two communities and develops understanding of the major environmental factors affecting them, the types of ecological services they provide, and likely impacts of current and future climate change. Includes visits to field and research centers. Limited to 20.

Consult C. Bastidas

2.982 Ecology and Sustainability of Coastal Ecosystems

Prereq: None U (Fall) Not offered regularly; consult department 3-2-4 units

Prepares students to recognize coastal ecosystems, their major environmental and biological drivers, and common impacts that human population growth and climate change have on them.  Students engage in a semester-long project to address and seek solutions to current challenges in sustainability of human activities on the coast, and to promote resilience of natural communities and ecosystem services.

J. Simpson, C. Bastidas

2.984[J] The Art and Science of Time Travel (New)

Same subject as CMS.343[J] Prereq: 8.02 and 18.02 G (Fall) 3-0-9 units

Explores time travel and other physical paradoxes—black holes, wormholes, and the multiverse—in the contexts of human narrative and contemporary scientific understanding. Instruction provided in the fundamental science of time travel in relativity and quantum mechanics. Students read and view classic time travel narratives in visual art and in film, and construct their own original time travel narratives. Limited to 20.

S. Lloyd, M. Reilly

2.989 Experiential Learning in Mechanical Engineering

Prereq: Permission of instructor G (Fall, IAP, Spring, Summer) Units arranged

Provides students the opportunity to learn and gain professional experience by participating in industrial projects related to Mechanical Engineering. Minimum project length is 10 weeks. Requires a written report upon completion. Before enrolling, students must contact MechE Graduate Office for procedures and restrictions; they must also have a firm internship offer and an identified MechE faculty member who will act as supervisor. Limited to Mechanical Engineering graduate students.

N. Hadjiconstantinou

2.990 Practical Experience

Prereq: None U (Fall, IAP, Spring, Summer) 0-1-0 units Can be repeated for credit.

For Mechanical Engineering undergraduates participating in curriculum-related off-campus experiences in mechanical engineering. Before enrolling, students must have an employment offer from a company or organization and must find a Mech E supervisor. Upon completion of the coursework the student must submit a detailed design notebook, approved by the MIT supervisor. Subject to departmental approval. Consult Department Undergraduate Office for details on procedures and restrictions.

Consult R. Karnik

2.991 Introduction to Graduate Study in Mechanical Engineering

Prereq: None G (Fall) 1-2-0 units

Familiarizes students with the requirements for their desired degree and the resources, both at MIT and beyond, to help them reach their educational and professional goals. Series of interactive lectures and seminars guides students through various aspects of life critical to navigating graduate school successfully. Topics include course requirements, PhD qualifying examinations, advisor/advisee relationships, funding and fellowships, mental health and wellbeing, housing options in the Boston area, and career options after graduation. Limited to first-year graduate students.

2.992 Professional Industry Immersion Project

Prereq: Permission of instructor G (Summer) Units arranged

Provides students a unique opportunity to participate in industry-based projects. Students gain professional industry experience in mechanical engineering projects that complement their academic experiences. Each project has a company supervisor, a specific advisor, and a course instructor. Course staff help students connect with specific companies and collaboratively design a project of mutual interest and benefit. Requires a written report and project presentation upon completion of a minimum of 10 weeks of off-campus activities. Limited to Mechanical Engineering graduate students.

2.993 Independent Study

Prereq: None U (Fall, IAP, Spring, Summer) Units arranged Can be repeated for credit.

Designed for undergraduates wanting to continue substantial projects of own choice, under faculty supervision, in mechanical engineering. Work may be of experimental, theoretical, or design nature. Projects may be arranged individually in most fields of department interest, i.e., in mechanics, design and manufacturing, controls and robotics, thermal science and energy engineering, bioengineering, ocean engineering and nanotechnology. 2.993 is letter-graded; 2.994 is P/D/F.

2.994 Independent Study

Prereq: None U (Fall, IAP, Spring, Summer) Units arranged [P/D/F] Can be repeated for credit.

2.995 Advanced Topics in Mechanical Engineering

Prereq: Permission of instructor G (Fall, IAP, Spring, Summer) Units arranged Can be repeated for credit.

Assigned reading and problems or research in distinct areas, either theoretical or experimental, or design. Arranged on individual basis with instructor in the following areas: mechanics and materials, thermal and fluid sciences, systems and design, biomedical engineering, and ocean engineering. Can be repeated for credit only for completely different subject matter.

Consult R. Abeyaratne

2.996 Advanced Topics in Mechanical Engineering

2.997 advanced topics in mechanical engineering.

Prereq: Permission of instructor G (Fall, IAP, Spring, Summer) Not offered regularly; consult department Units arranged Can be repeated for credit.

2.998 Advanced Topics in Mechanical Engineering

2.s007 special subject in mechanical engineering.

Prereq: None U (Spring) Units arranged

Lecture, seminar or laboratory course consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter.

2.S009 Special Subject in Mechanical Engineering

Prereq: None U (Fall) Not offered regularly; consult department Units arranged

2.S19 Special Subject in Mechanical Engineering

B. Aulet, A. Hosoi, M. Jester, S. Johnson, C. Lawson

2.S372 Special Subject in Mechanical Engineering

Prereq: None G (Spring) Units arranged

Lecture, seminar, or laboratory consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter.

2.S670 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Spring) Not offered regularly; consult department Units arranged Can be repeated for credit.

2.S679 Undergraduate Special Subject in Mechanical Engineering

2.s790-2.s792 graduate special subject in bioengineering.

Advanced lecture, seminar or laboratory course consisting of material in the broadly-defined field of bioengineering not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter.

Consult R. Kamm

2.S793 Graduate Special Subject in Mechanical Engineering

Prereq: None G (Fall) Not offered regularly; consult department 3-3-6 units

Advanced lecture, seminar, or laboratory consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter.

2.S794 Graduate Special Subject in Mechanical Engineering

Prereq: None G (Fall) Units arranged [P/D/F]

2.S795 Graduate Special Subject in Mechanical Engineering

Prereq: Permission of instructor G (Fall) Units arranged Can be repeated for credit.

2.S796 Special Subject in Mechanical Engineering

Prereq: None G (Fall) Not offered regularly; consult department Units arranged Can be repeated for credit.

2.S885 Special Subject in Mechanical Engineering

Prereq: None U (Fall) Not offered regularly; consult department 3-3-6 units

2.S97 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Fall) Not offered regularly; consult department 3-0-9 units Can be repeated for credit.

Lecture, seminar or laboratory course consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter. 2.S972 - 2.S974 are graded P/D/F.

2.S971 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Fall) Not offered regularly; consult department 3-3-6 units Can be repeated for credit.

2.S972 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Fall, Spring) Not offered regularly; consult department 3-1-2 units Can be repeated for credit.

Consult K. Zolot

2.S973 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Fall) Units arranged [P/D/F] Can be repeated for credit.

2.S974 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Fall) Not offered regularly; consult department Units arranged Can be repeated for credit.

2.S975 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (IAP) Units arranged [P/D/F] Can be repeated for credit.

Lecture, seminar or laboratory course consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter. See staff for scheduling information. Limited to 16.

Consult T. Consi

2.S976 Special Subject in Mechanical Engineering

2.s977 special subject in mechanical engineering, 2.s979 graduate special subject in mechanical engineering.

Prereq: None G (Fall) Not offered regularly; consult department Units arranged

2.S980 Graduate Special Subject in Mechanical Engineering

Prereq: Permission of instructor G (Fall) Units arranged [P/D/F] Can be repeated for credit.

Advanced lecture, seminar, or laboratory consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter. 2.S980 and 2.S996 are graded P/D/F.

2.S981 Graduate Special Subject in Mechanical Engineering

Prereq: Permission of instructor G (Spring) Units arranged Can be repeated for credit.

2.S982 Graduate Special Subject in Mechanical Engineering

Advanced lecture, seminar or laboratory consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter. 2.S980 and 2.S996 are graded P/D/F.

Consult V. Sudhir

2.S983 Graduate Special Subject in Mechanical Engineering

Prereq: Permission of instructor G (Fall) Not offered regularly; consult department Units arranged Can be repeated for credit.

2.S984 Graduate Special Subject in Mechanical Engineering

Prereq: None G (Fall) Not offered regularly; consult department 3-0-9 units

2.S985 Special Subject in Mechanical Engineering

2.s986 special subject in mechanical engineering.

Prereq: None Acad Year 2023-2024: Not offered Acad Year 2024-2025: G (Spring) Units arranged

2.S987 Special Subject in Mechanical Engineering

Prereq: None G (Spring) Not offered regularly; consult department Units arranged Can be repeated for credit.

S. Boriskina

2.S988 Special Subject in Mechanical Engineering

G. Traverso

2.S989 Undergraduate Special Subject in Mechanical Engineering

D. Frey, A. Talebinejad

2.S990 Graduate Special Subject in Mechanical Engineering

Prereq: None G (Spring) Units arranged Can be repeated for credit.

Lecture, seminar or laboratory course consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter. Enrollment limited.

2.S991 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Spring) Not offered regularly; consult department Units arranged

Consult Staff

2.S992 Graduate Special Subject in Mechanical Engineering

A. Gopinath

2.S993 Undergraduate Special Subject in Mechanical Engineering

Prereq: None Acad Year 2023-2024: Not offered Acad Year 2024-2025: U (Spring) Units arranged Can be repeated for credit.

Lecture, seminar or laboratory course consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter. 2.S972 - 2.S974 , 2.S992 are graded P/D/F.

2.S994 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Spring) Units arranged Can be repeated for credit.

Lecture, seminar, or laboratory consisting of material not offered in regularly scheduled subjects. Can be repeated for credit only for completely different subject matter. 2.S972 - 2.S974 and 2.S992 are graded P/D/F.

2.S995 Undergraduate Special Subject in Mechanical Engineering

Prereq: None U (Fall) 0-6-0 units Can be repeated for credit.

Consult I. Hunter

2.S996 Graduate Special Subject in Mechanical Engineering

Prereq: Permission of instructor G (Fall, Spring) Not offered regularly; consult department Units arranged [P/D/F] Can be repeated for credit.

2.S997 Graduate Special Subject in Mechanical Engineering

Prereq: Permission of instructor G (Fall) Not offered regularly; consult department 3-0-9 units Can be repeated for credit.

Consult F. Ahmed

2.S998 Graduate Special Subject in Mechanical Engineering

Consult R. Abeyaratne, J. Hart

2.S999 Graduate Special Subject in Mechanical Engineering

Prereq: Permission of instructor G (Spring) Not offered regularly; consult department Units arranged Can be repeated for credit.

Consult R. Abeyaratne, T. Gutowski

Thesis, Research and Practice

2.978 instruction in teaching engineering.

Subject meets with 1.95[J] , 5.95[J] , 7.59[J] , 8.395[J] , 18.094[J] Prereq: Permission of instructor G (Fall) Units arranged [P/D/F]

Participatory seminar focuses on the knowledge and skills necessary for teaching engineering in higher education. Topics include research on learning; course development; promoting active learning, problemsolving, and critical thinking in students; communicating with a diverse student body; using educational technology to further learning; lecturing; creating effective tests and assignments; and assessment and evaluation. Field-work teaching various subjects in the Mechanical Engineering department will complement classroom discussions.

2.979 Undergraduate Teaching

Prereq: None U (Fall, IAP, Spring) Units arranged [P/D/F] Can be repeated for credit.

For students participating in departmentally approved undergraduate teaching programs. Students assist faculty in the design and execution of the curriculum and actively participate in the instruction and monitoring of the class participants. Students prepare subject materials, lead discussion groups, and review progress. Credit is arranged on a subject-by-subject basis and is reviewed by the department.

A. E. Hosoi

2.999 Engineer's Degree Thesis Proposal Preparation

Prereq: Permission of instructor G (Fall, Spring, Summer) Units arranged Can be repeated for credit.

For students who must do additional work to convert an SM thesis to a Mechanical Engineer's (ME) or Naval Engineer's (NE) thesis, or for students who write an ME/NE thesis after having received an SM degree.

R. Abeyaratne, M. S. Triantafyllou

2.C01 Physical Systems Modeling and Design Using Machine Learning

Subject meets with 2.C51 Prereq: 2.086 ; Coreq: 6.C01 U (Spring; second half of term) 1-3-2 units Credit cannot also be received for 1.C01 , 1.C51 , 2.C51 , 3.C01[J] , 3.C51[J] , 10.C01[J] , 10.C51[J] , 20.C01[J] , 20.C51[J] , 22.C01 , 22.C51 , SCM.C51

Building on core material in 6.C01 , encourages open-ended exploration of the increasingly topical intersection between artificial intelligence and the physical sciences. Uses energy and information, and their respective optimality conditions, to define supervised and unsupervised learning algorithms as well as ordinary and partial differential equations. Subsequently, physical systems with complex constitutive relationships are drawn from elasticity, biophysics, fluid mechanics, hydrodynamics, acoustics, and electromagnetics to illustrate how machine learning-inspired optimization can approximate solutions to forward and inverse problems in these domains. Students taking graduate version complete additional assignments. Students cannot receive credit without simultaneous completion of 6.C01 .

2.C27[J] Computational Imaging: Physics and Algorithms (New)

Same subject as 3.C27[J] , 6.C27[J] Subject meets with 2.C67[J] , 3.C67[J] , 6.C67[J] Prereq: 18.C06[J] and ( 1.00 , 1.000 , 2.086 , 3.019 , or 6.100A ) U (Fall) 3-0-9 units

Explores the contemporary computational understanding of imaging: encoding information about a physical object onto a form of radiation, transferring the radiation through an imaging system, converting it to a digital signal, and computationally decoding and presenting the information to the user. Introduces a unified formulation of computational imaging systems as a three-round "learning spiral": the first two rounds describe the physical and algorithmic parts in two exemplary imaging systems. The third round involves a class project on an imaging system chosen by students. Undergraduate and graduate versions share lectures but have different recitations. Involves optional "clinics" to even out background knowledge of linear algebra, optimization, and computational imaging-related programming best practices for students of diverse disciplinary backgrounds. Students taking graduate version complete additional assignments.

G. Barbastathis, J. LeBeau, R. Ram, S. You

2.C51 Physical Systems Modeling and Design Using Machine Learning

Subject meets with 2.C01 Prereq: 18.0751 or 18.0851 ; Coreq: 6.C51 G (Spring; second half of term) 1-3-2 units Credit cannot also be received for 1.C01 , 1.C51 , 2.C01 , 3.C01[J] , 3.C51[J] , 10.C01[J] , 10.C51[J] , 20.C01[J] , 20.C51[J] , 22.C01 , 22.C51 , SCM.C51

Building on core material in 6.C51 , encourages open-ended exploration of the increasingly topical intersection between artificial intelligence and the physical sciences. Uses energy and information, and their respective optimality conditions, to define supervised and unsupervised learning algorithms as well as ordinary and partial differential equations. Subsequently, physical systems with complex constitutive relationships are drawn from elasticity, biophysics, fluid mechanics, hydrodynamics, acoustics, and electromagnetics to illustrate how machine learning-inspired optimization can approximate solutions to forward and inverse problems in these domains. Students taking graduate version complete additional assignments. Students cannot receive credit without simultaneous completion of 6.C51 .

2.C67[J] Computational Imaging: Physics and Algorithms (New)

Same subject as 3.C67[J] , 6.C67[J] Subject meets with 2.C27[J] , 3.C27[J] , 6.C27[J] Prereq: 18.C06[J] and ( 1.00 , 1.000 , 2.086 , 3.019 , or 6.100A ) G (Fall) 3-0-9 units

Contemporary understanding of imaging is computational: encoding onto a form of radiation the information about a physical object, transferring the radiation through the imaging system, converting it to a digital signal, and computationally decoding and presenting the information to the user. This class introduces a unified formulation of computational imaging systems as a three-round "learning spiral": the first two rounds, instructors describe the physical and algorithmic parts in two exemplary imaging systems. The third round, students conduct themselves as the class project on an imaging system of their choice. The undergraduate and graduate versions share lectures but have different recitations. Throughout the term, we also conduct optional "clinics" to even out background knowledge of linear algebra, optimization, and computational imaging-related programming best practices for students of diverse disciplinary backgrounds.

2.EPE UPOP Engineering Practice Experience

Engineering School-Wide Elective Subject. Offered under: 1.EPE , 2.EPE , 3.EPE , 6.EPE , 8.EPE , 10.EPE , 15.EPE , 16.EPE , 20.EPE , 22.EPE Prereq: None U (Fall, Spring) 0-0-1 units Can be repeated for credit.

Provides students with skills to prepare for and excel in the world of industry. Emphasizes practical application of career theory and professional development concepts. Introduces students to relevant and timely resources for career development, provides students with tools to embark on a successful internship search, and offers networking opportunities with employers and MIT alumni. Students work in groups, led by industry mentors, to improve their resumes and cover letters, interviewing skills, networking abilities, project management, and ability to give and receive feedback. Objective is for students to be able to adapt and contribute effectively to their future employment organizations. A total of two units of credit is awarded for completion of the fall and subsequent spring term offerings. Application required; consult UPOP website for more information.

K. Tan-Tiongco, D. Fordell

2.EPW UPOP Engineering Practice Workshop

Engineering School-Wide Elective Subject. Offered under: 1.EPW , 2.EPW , 3.EPW , 6.EPW , 10.EPW , 16.EPW , 20.EPW , 22.EPW Prereq: 2.EPE U (IAP, Spring) 1-0-0 units

Provides sophomores across all majors with opportunities to develop and practice communication, teamwork, and problem-solving skills to become successful professionals in the workplace, particularly in preparation for their summer industry internship. This immersive, multi-day Team Training Workshop (TTW) is comprised of experiential learning modules focused on expanding skills in areas that employers report being most valuable in the workplace. Modules are led by MIT faculty with the help of MIT alumni and other senior industry professionals. Skills applied through creative simulations, team problem-solving challenges, oral presentations, and networking sessions with prospective employers. Enrollment limited to those in the UPOP program.

2.THG Graduate Thesis

Prereq: Permission of advisor G (Fall, IAP, Spring, Summer) Units arranged Can be repeated for credit.

Program of research leading to the writing of an SM, PhD, or ScD thesis; to be arranged by the student and an appropriate MIT faculty member.

2.THU Undergraduate Thesis

Individual self-motivated study, research, or design project under faculty supervision. Departmental program requirement: minimum of 6 units. Instruction and practice in written communication provided.

2.UR Undergraduate Research in Mechanical Engineering

Individual study, research, or laboratory investigations under faculty supervision, including individual participation in an ongoing research project. See projects listing in Undergraduate Office, 1-110, for guidance.

Consult D. Rowell

2.URG Undergraduate Research in Mechanical Engineering

Consult N. Fang, K. Kamrin

MIT Academic Bulletin

Print this page.

The PDF includes all information on this page and its related tabs. Subject (course) information includes any changes approved for the current academic year.

Eindhoven University of Technology research portal Logo

  • Help & FAQ

Mechanical Engineering

Student theses.

  • 1 - 50 out of 5,067 results
  • Title (descending)

Search results

(structural) identification of a single track truck model.

Supervisor: Nijmeijer, H. (Supervisor 1) & Bekkers, F. P. J. (External coach)

Student thesis : Master

(Voor-)ontwerp van een transportsysteem voor productstroken

Supervisor: Smals, A. T. J. M. (External person) (Supervisor 1)

1D parameter study on tar conversion in counterflow diffusion flames

Supervisor: de Goey, L. P. H. (Supervisor 1), van Oijen, J. A. (Supervisor 2) & Vogels - Verhoeven, L. M. (Supervisor 2)

2D Core flow instability in a wide vaneless diffuser: experimental set-up design

Supervisor: van Steenhoven, A. A. (Supervisor 1), de Lange, H. C. (Supervisor 2) & Ljevar, S. (External coach)

2D Detection of Carton Boxes from RGB images

Supervisor: Saccon, A. (Supervisor 1) & De Queiroz Mendes, R. (Coach)

Student thesis : Bachelor

2D in-cylinder temperature and fuel distribution measurements using two-color LIF

Supervisor: Izadi Najafabadi, M. (Supervisor 1), Dam, N. J. (Supervisor 2) & Deen, N. G. (Supervisor 2)

2D temperature measurements in the EHPC using laser-induced phosphorescence

Supervisor: de Goey, L. P. H. (Supervisor 1), Aldén, L. E. M. (External coach), Dam, N. J. (Supervisor 2), Luijten, C. C. M. (Supervisor 2), Speetjens, M. F. M. (Supervisor 2) & Yu, M. (Supervisor 2)

2-D temperature measurements in water using laser induced fluorescence

Supervisor: van Steenhoven, A. A. (Supervisor 1), Rindt, C. C. M. (Supervisor 2), Kieft, R. (Supervisor 2) & van der Plas, G. A. J. (Supervisor 2)

2-D temperatuurmetingen met behulp van "laser-induced fluorescence"

Supervisor: van Steenhoven, A. A. (Supervisor 1), Kieft, R. (Supervisor 2), Rindt, C. C. M. (Supervisor 2) & van der Plas, G. A. J. (Supervisor 2)

3D FE implementation of an incompressible quadriphasic mixture model for large deformations

Supervisor: Baaijens, F. P. T. (Supervisor 1) & Huyghe, J. M. R. J. (Supervisor 2)

3D geometry reconstruction based on limited experimental data

Supervisor: Wijnen, J. (Supervisor 1) & Peerlings, R. H. J. (Supervisor 2)

3D geometry reconstruction of multi-phase materials with limited experimental data using the Phase Field method

3d modelling and validation of boiler emissions using the flamelet generated manifold technique.

Supervisor: de Goey, L. P. H. (Supervisor 1) & Vance, F. H. (Supervisor 2)

3D Object Detection From LiDAR data using Distance Depended Feature Extraction

Supervisor: Dubbelman, G. (Supervisor 1)

3D particle tracking velocimetry of particle-laden turbulent pipe flow

Supervisor: Kuerten, J. G. M. (Supervisor 1) & van der Geld, C. W. M. (Supervisor 1)

3D printing of microfluidic chips with different modules for point-of-care testing applications

Supervisor: den Toonder, J. M. J. (Supervisor 1), Bernards, J. (External person) (External coach) & Planken, K. L. (External coach)

Supervisor: Schellekens, P. H. J. (Supervisor 1), Velzel, C. H. F. (Supervisor 2) & Busselaar, E. J. (External person) (External coach)

3D viscoelastic analysis

Supervisor: Janssen, J. D. (Supervisor 1), Baaijens, F. P. T. (Supervisor 2) & Verbeeten, W. M. H. (Supervisor 2)

5th Generation district heating and cooling in the Efteling

Supervisor: van Bunder, T. M. L. A. (Supervisor 1) & Smeulders, D. M. J. (Supervisor 2)

A 2-D finite element model of a muscle cell in agarose gel-matrix

Supervisor: Baaijens, F. P. T. (Supervisor 1), Oomens, C. W. J. (Supervisor 2), Bouten, C. V. C. (Supervisor 2) & Breuls, R. G. M. (Supervisor 2)

A 3-D finite element model of the tibialis anterior muscle of a rat: a contribution to pressure sores research

Supervisor: Janssen, J. D. (Supervisor 1), Oomens, C. W. J. (Supervisor 2), Bosboom, E. M. H. (Supervisor 2) & Bouten, C. V. C. (Supervisor 2)

A 3-D structural skin model: development and implementation

Supervisor: Starmans, F. J. M. (Supervisor 1), Douven, L. F. A. (Supervisor 2), Oomens, C. W. J. (Supervisor 2) & Janssen, J. D. (Supervisor 2)

Aanbrengen van krimpkappen om verschillende typen beeldbuizen met behulp van een universele automaat

Aandrijvingen van een 3d-meetmachine.

Supervisor: Koster, M. P. (Supervisor 1) & Lammers, M. G. M. (Supervisor 2)

Aanpassing en ontwerp van een injecteermachine

Supervisor: van der Hoorn, R. J. G. A. (Supervisor 1) & Schrauwen, J. J. M. (External person) (External coach)

Aanzet voor een softwarepakket ter analyse van de afwijkingenstructuur van meerassige machines

Supervisor: van der Wolf, A. C. H. (Supervisor 1), Schellekens, P. H. J. (Supervisor 2) & Soons, J. A. (Supervisor 2)

A bottum-up approach for modeling the performance of partially shaded PV systems with power optimizers

Supervisor: Loonen, R. C. G. M. (Supervisor 1) & Bognár, Á. (Supervisor 2)

A brain chip to investigate neurite outgrowth by trapping cell-laden hydrogel beads in microsieves

Supervisor: Bouten, C. (Supervisor 1), Luttge, R. (Supervisor 2), Kurniawan, N. (Supervisor 2) & Bastiaens, A. (Supervisor 2)

Absolute Stress Measurement at the Microscale Using High Resolution Electron Backscatter Diffraction and Focused Ion Beam Ring-core Milling

Supervisor: Hoefnagels, J. P. M. (Supervisor 1)

A Case Study on Performance Degradation of Cooling Coils in the Netherlands

Supervisor: Zeiler, W. (Supervisor 1), Slootweg, H. (Supervisor 2), Schellen, H. (Supervisor 2), van den Brink, A. (Supervisor 2) & Katic, K. (Supervisor 2)

Accuracy analysis of an Atomic Force Microscope

Supervisor: Schellekens, P. H. J. (Supervisor 1), Haitjema, H. (Supervisor 2) & Pril, W. O. (Supervisor 2)

Accuracy analysis of multi-axis machines by Double Ball Bar method

Supervisor: Schellekens, P. H. J. (Supervisor 1) & Levasier, L. M. (Supervisor 2)

Accuracy evaluation of a kinematic tractor semi-trailer model using real-world measurement data

Supervisor: Besselink, I. J. M. (Supervisor 1) & Gosar, V. (Supervisor 2)

Accuracy of simulation methods for Differential Algebraic Equations of the simple and double pendulum

Supervisor: Cortes Garcia, I. (Supervisor 1)

Accuracy of Single Camera Pose Estimation with ArUco Fiducial Markers

Supervisor: Arslan, Ö. (Supervisor 1) & Işleyen, A. (Supervisor 2)

Accuracy of speed prediction of a self-propelled vessel using CFD

Supervisor: van Esch, B. P. M. (Supervisor 1) & Mikelic, A. (External coach)

A CFD study on DME/Methanol fuelled unconventional RCCI

Supervisor: Somers, L. M. T. (Supervisor 1)

A Combined Safety and Security based system development process for Automotive Applications

Supervisor: Barosan, I. (Supervisor 1), van Uden, J. G. S. (External coach) & van Bergeijk, K. (External coach)

A combustion model for a closed-cycle dieselengine

Supervisor: Evers, D. J. W. M. (Supervisor 1)

A comparative study between TRNSYS and RC thermal models to simulate a district thermal demand

Supervisor: Rindt, C. C. M. (Supervisor 1) & Jiang, M. (Supervisor 2)

A comparative study of conventional and pipeless batch plants

Supervisor: Rooda, J. E. (Supervisor 1), Drinkenburg, A. A. H. (Supervisor 2) & van Beek, D. A. (Coach)

A comparative study on modern lane detection algorithms

Supervisor: Dubbelman, G. (Supervisor 1) & Das, A. (Supervisor 2)

A comparison of timed games and time optimal supervisor synthesis

Supervisor: Rooda, J. E. (Supervisor 1) & van de Mortel-Fronczak, J. M. (Supervisor 2)

A comparison study between power-split CVTs and a push-belt CVT

Supervisor: Hofman, T. (Supervisor 1), Veenhuizen, P. A. (Supervisor 2) & Steinbuch, M. (Supervisor 2)

A computational fracture mechanics study of buckling in thin film systems

A computational model for evaluating a district heating system using a biomass heat source and thermal energy storage.

Supervisor: Hensen, J. L. M. (Supervisor 1), Nguyen, H. P. (Supervisor 2), Loomans, M. G. L. C. (Supervisor 2), Bynum, J. D. (Supervisor 2), Torrens Galdiz, J. I. (Supervisor 2) & de Schrevel, R. A. M. (External person) (External coach)

A computational study of tilted turbines: Examination of power production at different wind directions

Supervisor: Verhoosel, C. V. (Supervisor 1) & van de Klippe, R. (External person) (External coach)

A computational study on the role of glide plane interaction on the dislocation behavior by means of the Peierls-Naborro model

Supervisor: Bormann, F. (Supervisor 1) & Peerlings, R. (Supervisor 2)

A computer simulation of a slabbing mill with conventional direct current and superconducting machines

A concept for a low noise fan drive.

Supervisor: Meijlink, T. J. J. (Supervisor 1) & Verschuijten, J. A. M. (External coach)

ScholarWorks@UMass Amherst

Home > Engineering > MIE > ME_THESES

Mechanical and Industrial Engineering

Mechanical Engineering Masters Theses Collection

Theses from 2024 2024.

TECHNICAL EVALUATION OF FLOATING OFFSHORE WIND PLANTS AND INSTALLATION OPERATIONS , CENGIZHAN CENGIZ, Mechanical Engineering

Heat Transfer Enhacement of Latent Heat Thermal Enery Storage , Joe Hatem T. Saba, Mechanical Engineering

Theses from 2023 2023

Device Design for Inducing Aneurysm-Susceptible Flow Conditions Onto Endothelial Cells , hans f. foelsche, Mechanical Engineering

Thermal Conductivity and Mechanical Properties of Interlayer-Bonded Graphene Bilayers , Afnan Mostafa, Mechanical Engineering

Wind-Wave Misalignment Effects on Multiline Anchor Systems for Floating Offshore Wind Turbines , Doron T. Rose, Mechanical Engineering

Theses from 2022 2022

A Simplified Fluid Dynamics Model of Ultrafiltration , Christopher Cardimino, Mechanical Engineering

Local Nanomechanical Variations of Cold-sprayed Tantalum Coatings , Dhrubajyoti Chowdhury, Mechanical Engineering

Aerodynamically Augmented Air-Hockey Pucks , Madhukar Prasad, Mechanical Engineering

Analysis of Low-Induction Rotors for Increased Power Production , Jack E. Rees, Mechanical Engineering

Application of the New IEC International Design Standard for Offshore Wind Turbines to a Reference Site in the Massachusetts Offshore Wind Energy Area , Samuel C. Roach, Mechanical Engineering

Applications of Thermal Energy Storage with Electrified Heating and Cooling , Erich Ryan, Mechanical Engineering

Theses from 2021 2021

Design and Testing of a Foundation Raised Oscillating Surge Wave Energy Converter , Jacob R. Davis, Mechanical Engineering

Wind Turbine Power Production Estimation for Better Financial Agreements , Shanon Fan, Mechanical Engineering

Finite Element Analysis of Impact and Cohesion of Cold Sprayed Particles onto Non-Planar Surfaces , Zhongkui Liu, Mechanical Engineering

Mechanical Design and Analysis: High-Precision Microcontact Printhead for Roll-to-Roll Printing of Flexible Electronics , Mehdi Riza, Mechanical Engineering

Jet Breakup Dynamics of Inkjet Printing Fluids , Kashyap Sundara Rajan, Mechanical Engineering

Ground Source Heat Pumps: Considerations for Large Facilities in Massachusetts , Eric Wagner, Mechanical Engineering

Theses from 2020 2020

Modeling of Electrical Grid Systems to Evaluate Sustainable Electricity Generation in Pakistan , Muhammad Mustafa Amjad, Mechanical Engineering

A Study on Latent Thermal Energy Storage (LTES) using Phase Change Materials (PCMs) 2020 , Ritvij Dixit, Mechanical Engineering

SunDown: Model-driven Per-Panel Solar Anomaly Detection for Residential Arrays , Menghong Feng, Mechanical Engineering

Nozzle Clogging Prevention and Analysis in Cold Spray , Alden Foelsche, Mechanical Engineering

Short Term Energy Forecasting for a Microgird Load using LSTM RNN , Akhil Soman, Mechanical Engineering

Optimization of Thermal Energy Storage Sizing Using Thermodynamic Analysis , Andrew Villanueva, Mechanical Engineering

Fabrication of Binder-Free Electrodes Based on Graphene Oxide with CNT for Decrease of Resistance , Di Zhang, Mechanical Engineering

Theses from 2019 2019

Computational Fluid Dynamics Models of Electromagnetic Levitation Experiments in Reduced Gravity , Gwendolyn Bracker, Mechanical Engineering

Forecasting the Cost of Electricity Generated by Offshore Wind Turbines , Timothy Costa, Mechanical Engineering

Optical-Fiber-Based Laser-Induced Cavitation for Dynamic Mechanical Characterization of Soft Materials , Qian Feng, Mechanical Engineering

On the Fuel Spray Applications of Multi-Phase Eulerian CFD Techniques , Gabriel Lev Jacobsohn, Mechanical Engineering

Topology Network Optimization of Facility Planning and Design Problems , Ravi Ratan Raj Monga, Mechanical Engineering

The Promise of VR Headsets: Validation of a Virtual Reality Headset-Based Driving Simulator for Measuring Drivers’ Hazard Anticipation Performance , Ganesh Pai Mangalore, Mechanical Engineering

Ammonia Production from a Non-Grid Connected Floating Offshore Wind-Farm: A System-Level Techno-Economic Review , Vismay V. Parmar, Mechanical Engineering

Calculation of Scalar Isosurface Area and Applications , Kedar Prashant Shete, Mechanical Engineering

Theses from 2018 2018

Electroplating of Copper on Tungsten Powder , Richard Berdos, Mechanical Engineering

A NUMERICAL FLUTTER PREDICTOR FOR 3D AIRFOILS USING THE ONERA DYNAMIC STALL MODEL , Pieter Boersma, Mechanical Engineering

Streamwise Flow-Induced Oscillations of Bluff Bodies - The Influence of Symmetry Breaking , Tyler Gurian, Mechanical Engineering

Thermal Radiation Measurement and Development of Tunable Plasmonic Thermal Emitter Using Strain-induced Buckling in Metallic Layers , Amir Kazemi-Moridani, Mechanical Engineering

Restructuring Controllers to Accommodate Plant Nonlinearities , Kushal Sahare, Mechanical Engineering

Application and Evaluation of Lighthouse Technology for Precision Motion Capture , Soumitra Sitole, Mechanical Engineering

High Strain Rate Dynamic Response of Aluminum 6061 Micro Particles at Elevated Temperatures and Varying Oxide Thicknesses of Substrate Surface , Carmine Taglienti, Mechanical Engineering

The Effects of Mechanical Loading and Tumor Factors on Osteocyte Dendrite Formation , Wenbo Wang, Mechanical Engineering

Microenvironment Regulates Fusion of Breast Cancer Cells , Peiran Zhu, Mechanical Engineering

Design for Sustainability through a Life Cycle Assessment Conceptual Framework Integrated within Product Lifecycle Management , Renpeng Zou, Mechanical Engineering

Theses from 2017 2017

Improving the Efficiency of Wind Farm Turbines using External Airfoils , Shujaut Bader, Mechanical Engineering

Evaluation Of Impedance Control On A Powered Hip Exoskeleton , Punith condoor, Mechanical Engineering

Experimental Study on Viscoelastic Fluid-Structure Interactions , Anita Anup Dey, Mechanical Engineering

BMI, Tumor Lesion and Probability of Femur Fracture: a Probabilistic Biomechanics Approach , Zhi Gao, Mechanical Engineering

A Magnetic Resonance Compatible Knee Extension Ergometer , Youssef Jaber, Mechanical Engineering

Non-Equispaced Fast Fourier Transforms in Turbulence Simulation , Aditya M. Kulkarni, Mechanical Engineering

INCORPORATING SEASONAL WIND RESOURCE AND ELECTRICITY PRICE DATA INTO WIND FARM MICROSITING , Timothy A. Pfeiffer, Mechanical Engineering

Effects of Malformed or Absent Valves to Lymphatic Fluid Transport and Lymphedema in Vivo in Mice , Akshay S. Pujari, Mechanical Engineering

Electroless Deposition & Electroplating of Nickel on Chromium-Nickel Carbide Powder , Jeffrey Rigali, Mechanical Engineering

Numerical Simulation of Multi-Phase Core-Shell Molten Metal Drop Oscillations , Kaushal Sumaria, Mechanical Engineering

Theses from 2016 2016

Cold Gas Dynamic Spray – Characterization of Polymeric Deposition , Trenton Bush, Mechanical Engineering

Intent Recognition Of Rotation Versus Translation Movements In Human-Robot Collaborative Manipulation Tasks , Vinh Q. Nguyen, Mechanical Engineering

A Soft Multiple-Degree of Freedom Load Cell Based on The Hall Effect , Qiandong Nie, Mechanical Engineering

A Haptic Surface Robot Interface for Large-Format Touchscreen Displays , Mark Price, Mechanical Engineering

Numerical Simulation of High Velocity Impact of a Single Polymer Particle during Cold Spray Deposition , Sagar P. Shah, Mechanical Engineering

Tunable Plasmonic Thermal Emitter Using Metal-Coated Elastomeric Structures , Robert Zando, Mechanical Engineering

Theses from 2015 2015

Thermodynamic Analysis of the Application of Thermal Energy Storage to a Combined Heat and Power Plant , Benjamin McDaniel, Mechanical Engineering

Towards a Semantic Knowledge Management Framework for Laminated Composites , Vivek Premkumar, Mechanical Engineering

A CONTINOUS ROTARY ACTUATION MECHANISM FOR A POWERED HIP EXOSKELETON , Matthew C. Ryder, Mechanical Engineering

Optimal Topological Arrangement of Queues in Closed Finite Queueing Networks , Lening Wang, Mechanical Engineering

Creating a New Model to Predict Cooling Tower Performance and Determining Energy Saving Opportunities through Economizer Operation , Pranav Yedatore Venkatesh, Mechanical Engineering

Theses from 2014 2014

New Generator Control Algorithms for Smart-Bladed Wind Turbines to Improve Power Capture in Below Rated Conditions , Bryce B. Aquino, Mechanical Engineering

UBOT-7: THE DESIGN OF A COMPLIANT DEXTEROUS MOBILE MANIPULATOR , Jonathan Cummings, Mechanical Engineering

Design and Control of a Two-Wheeled Robotic Walker , Airton R. da Silva Jr., Mechanical Engineering

Free Wake Potential Flow Vortex Wind Turbine Modeling: Advances in Parallel Processing and Integration of Ground Effects , Nathaniel B. Develder, Mechanical Engineering

Buckling of Particle-Laden Interfaces , Theo Dias Kassuga, Mechanical Engineering

Modeling Dynamic Stall for a Free Vortex Wake Model of a Floating Offshore Wind Turbine , Evan M. Gaertner, Mechanical Engineering

An Experimental Study of the C-Start of a Mechanical Fish , Benjamin Kandaswamy Chinna Thambi, Mechanical Engineering

Measurement and Verification - Retro-Commissioning of a LEED Gold Rated Building Through Means of an Energy Model: Are Aggressive Energy Simulation Models Reliable? , Justin M. Marmaras, Mechanical Engineering

Development of a Support Structure for Multi-Rotor Wind Turbines , Gaurav Murlidhar Mate, Mechanical Engineering

Towards Accessible, Usable Knowledge Frameworks in Engineering , Jeffrey Mcpherson, Mechanical Engineering

A Consistent Algorithm for Implementing the Space Conservation Law , Venkata Pavan Pillalamarri Narasimha Rao, Mechanical Engineering

Kinetics of Aluminization and Homogenization in Wrought H-X750 Nickel-Base Superalloy , Sean Reilly, Mechanical Engineering

Single-Phase Turbulent Enthalpy Transport , Bradley J. Shields, Mechanical Engineering

CFD Simulation of the Flow around NREL Phase VI Wind Turbine , Yang Song, Mechanical Engineering

Selection of Outputs for Distributed Parameter Systems by Identifiability Analysis in the Time-scale Domain , Teergele, Mechanical Engineering

The Optimization of Offshore Wind Turbine Towers Using Passive Tuned Mass Dampers , Onur Can Yilmaz, Mechanical Engineering

Design of a Passive Exoskeleton Spine , Haohan Zhang, Mechanical Engineering

TURBULENT TRANSITION IN ELECTROMAGNETICALLY LEVITATED LIQUID METAL DROPLETS , Jie Zhao, Mechanical Engineering

Theses from 2013 2013

Optimization of Mixing in a Simulated Biomass Bed Reactor with a Center Feeding Tube , Michael T. Blatnik, Mechanical Engineering

Continued Development of a Chilled Water System Analysis Tool for Energy Conservation Measures Evaluation , Ghanshyam Gaudani, Mechanical Engineering

Application of Finite Element Method in Protein Normal Mode Analysis , Chiung-fang Hsu, Mechanical Engineering

Asymmetric Blade Spar for Passive Aerodynamic Load Control , Charles Mcclelland, Mechanical Engineering

Background and Available Potential Energy in Numerical Simulations of a Boussinesq Fluid , Shreyas S. Panse, Mechanical Engineering

Techno-Economic Analysis of Hydrogen Fuel Cell Systems Used as an Electricity Storage Technology in a Wind Farm with Large Amounts of Intermittent Energy , Yash Sanghai, Mechanical Engineering

Multi Rotor Wind Turbine Design And Cost Scaling , Preeti Verma, Mechanical Engineering

Activity Intent Recognition of the Torso Based on Surface Electromyography and Inertial Measurement Units , Zhe Zhang, Mechanical Engineering

Theses from 2012 2012

Simulations of Non-Contact Creep in Regimes of Mixed Dominance , Maija Benitz, Mechanical Engineering

Techniques for Industrial Implementation of Emerging Semantic Technologies , Jay T. Breindel, Mechanical Engineering

Environmental Impacts Due to Fixed and Floating Offshore Wind Turbines , Micah K. Brewer, Mechanical Engineering

Physical Model of the Feeding Strike of the Mantis Shrimp , Suzanne M. Cox, Mechanical Engineering

Investigating the Relationship Between Material Property Axes and Strain Orientations in Cebus Apella Crania , Christine M. Dzialo, Mechanical Engineering

A Multi-Level Hierarchical Finite Element Model for Capillary Failure in Soft Tissue , Lu Huang, Mechanical Engineering

Finite Element Analysis of a Femur to Deconstruct the Design Paradox of Bone Curvature , Sameer Jade, Mechanical Engineering

Vortex-Induced Vibrations of an Inclined Cylinder in Flow , Anil B. Jain, Mechanical Engineering

Experimental Study of Stability Limits for Slender Wind Turbine Blades , Shruti Ladge, Mechanical Engineering

Semi-Active Damping for an Intelligent Adaptive Ankle Prosthesis , Andrew K. Lapre, Mechanical Engineering

A Finite Volume Approach For Cure Kinetics Simulation , Wei Ma, Mechanical Engineering

Advanced Search

  • Notify me via email or RSS
  • Collections
  • Disciplines

Author Corner

  • Login for Faculty Authors
  • Faculty Author Gallery
  • Expert Gallery
  • University Libraries
  • Mechanical and Industrial Engineering Webpage
  • UMass Amherst

This page is sponsored by the University Libraries.

© 2009 University of Massachusetts Amherst • Site Policies

Privacy Copyright

  • Press Enter to activate screen reader mode.

Bachelor Mechanical Engineering

A sound technological basis and a wide horizon provide the basis for the work of mechanical engineers at the interfaces where electronics, computer science, mechanics, thermo-dynamics and chemistry meet and where products, systems and processes are developed, calculated and planned.

Career profile

Mechanical engineers develop many varied products, ranging from tiny microsensors for medical technology and highly efficient energy plants to applications for automotive and aviation engineering. They use computers to design new machine tools or construct wheelchairs that can climb stairs.

In the process engineering field, for example, they control industrial, biotechnical or chemical processes. They also assume management tasks in companies, work as quality or risk assessment experts in the service industry (evaluating fire and explosion hazards, for example), draw up production forecasts, and work in the field of strategic consultancy. Their professional environment is internationally oriented.

Bachelor's degree program (180 credits)

In the first four semesters, basic theoretical knowledge of mechanical engineering is acquired in compulsory subjects. In the fifth and sixth semester, students attend electives in their main areas of interest. In the fifth semester, they select a focus specialization or a focus project. They conclude their studies with the Bachelor’s thesis that is written in the sixth semester.

  • General basic courses : Mathematics, Computer Science, Chemistry, Physics
  • Basic courses in engineering : Product Development, Control Engineering, Thermodynamics, etc.
  • Focus specialization : Engineering for Health; Design, Mechanics and Materials; Energy, Flows and Processes; Mechatronics and Robotics; Microsystems and Nanotechnology; Production Technology; Management, Technology and Economics or Focus project
  • Innovation project, electives, Bachelor’s thesis

Please see the German page for details:  Maschineningenieurwissenschaften

Master's degree program Mechanical Engineering (90 credits)

  • Core Course
  • Multidisciplinary Courses
  • Semester project
  • Industrial Internship
  • Master’s thesis (6 months)  

Master's degree program in Process Engineering (90 credits)

  • Core Courses
  • Master’s thesis (6 months)

Follow this link for all consecutive and specialised Master's degree programs

Got any suggestions?

We want to hear from you! Send us a message and help improve Slidesgo

Top searches

Trending searches

mechanical engineering bachelor thesis

11 templates

mechanical engineering bachelor thesis

21 templates

mechanical engineering bachelor thesis

holy spirit

35 templates

mechanical engineering bachelor thesis

memorial day

12 templates

mechanical engineering bachelor thesis

17 templates

mechanical engineering bachelor thesis

art portfolio

81 templates

Engineering Thesis

It seems that you like this template, engineering thesis presentation, premium google slides theme and powerpoint template.

Are you about to defend your Engineering Thesis? We have created a presentation to meet your needs. Download and edit it now and get your formulas ready.

This thesis defense presentation has a very modern design. The main hues of the template are yellow and white. You’ll find some organic shapes in the background, combined with hand-drawn illustrations of gears. In order to support your dissertation, we have included infographics, tables, maps and slides related to the methodologies that you have employed.

Features of this template

  • A mechanic design with gears
  • 100% editable and easy to modify
  • 27 different slides to impress your audience
  • Available in five colors: yellow, green, blue, pink and red
  • Contains easy-to-edit graphics, maps and mockups
  • Includes 500+ icons and Flaticon’s extension for customizing your slides
  • Designed to be used in Google Slides and Microsoft PowerPoint
  • 16:9 widescreen format suitable for all types of screens
  • Includes information about fonts, colors, and credits of the free and premium resources used

What are the benefits of having a Premium account?

What Premium plans do you have?

What can I do to have unlimited downloads?

Don’t want to attribute Slidesgo?

Gain access to over 24500 templates & presentations with premium from 1.67€/month.

Are you already Premium? Log in

Available colors

Original Color

Related posts on our blog

How to Add, Duplicate, Move, Delete or Hide Slides in Google Slides | Quick Tips & Tutorial for your presentations

How to Add, Duplicate, Move, Delete or Hide Slides in Google Slides

How to Change Layouts in PowerPoint | Quick Tips & Tutorial for your presentations

How to Change Layouts in PowerPoint

How to Change the Slide Size in Google Slides | Quick Tips & Tutorial for your presentations

How to Change the Slide Size in Google Slides

Related presentations.

Cool Doodly Thesis presentation template

Premium template

Unlock this template and gain unlimited access

Chemistry Thesis presentation template

IMAGES

  1. Bachelor Thesis

    mechanical engineering bachelor thesis

  2. BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING / bachelor-of-science-in

    mechanical engineering bachelor thesis

  3. Thesis Ideas For Mechanical

    mechanical engineering bachelor thesis

  4. Thesis proposal mechanical engineering by danielledevpe

    mechanical engineering bachelor thesis

  5. Mechanical ENGINEERING

    mechanical engineering bachelor thesis

  6. Engineering thesis defense presentation

    mechanical engineering bachelor thesis

VIDEO

  1. SIT Graduation 2023

  2. Sampada Acharya

  3. NUS Commencement 2023 Ceremony 13

  4. Friday 6th of May 10:00am

  5. MSE Year 2 Automation Project

  6. This is My Bachelor Thesis Project (3D printing, Astrophotography)

COMMENTS

  1. Mechanical Engineering Undergraduate Honors Theses

    Mechanical Behavior of Cyclo-18 on Nickel and Copper Substrates, Reagan Michael Kraft. PDF. Characterizing High Entropy Alloys for Hypersonic Applications, Katherine Pettus. PDF. Mathematical Modeling of a Two Wheeled Robotic Base, Kathryn Remell. PDF. Transient Performance and Melt Front Characterization of Phase Change Materials, Tyler Stamps

  2. Mechanical Engineering Theses and Dissertations

    Waterproofing Shape-Changing Mechanisms Using Origami Engineering; Also a Mechanical Property Evaluation Approach for Rapid Prototyping, Andrew Jason Katz. PDF. Hydrogen Effects on X80 Steel Mechanical Properties Measured by Tensile and Impact Testing, Xuan Li. PDF. Application and Analysis of Asymmetrical Hot and Cold Stimuli, Ahmad Manasrah. PDF

  3. Undergraduate Theses

    View More Subject Mechanical Engineering. (1713) Physics. (429) Electrical Engineering and Computer Science. (305) Mechanical Engineering (304) Electrical Engineering and Computer Science (293) Materials Science and Engineering. (273) Architecture (175) Earth, Atmospheric, and Planetary Sciences. (152) Nuclear Science and

  4. MIT Theses

    MIT's DSpace contains more than 58,000 theses completed at MIT dating as far back as the mid 1800's. Theses in this collection have been scanned by the MIT Libraries or submitted in electronic format by thesis authors. Since 2004 all new Masters and Ph.D. theses are scanned and added to this collection after degrees are awarded.

  5. PDF Strengths and Challenges of Mechanical Design Processes in a Federally

    Bachelor of Science in Mechanical Engineering at the Massachusetts Institute of Technology February 2022 ... that can actually be applied to the design process outlined later in this thesis. Product design process as outlined by Ulrich, Eppinger, and Yang [1]: 0. Planning: The opportunity is identified along with an assessment of current ...

  6. Mechanical Engineering Theses and Dissertations

    Theses/Dissertations from 2024. Application of High-Deflection Strain Gauges to Characterize Spinal-Motion Phenotypes Among Patients with CLBP, Spencer Alan Baker. GPS-Denied Localization of Landing eVTOL Aircraft, Aaron C. Brown. Development of Deployable Arrays for Satellites through Origami-Pattern Design, Modeling, and Optimization, Nathan ...

  7. SB Thesis Information

    General Information. The SB in Mechanical Engineering requires a thesis with a minimum of 6 units credit. The objective of this requirement is to give students an opportunity to learn about a topic in depth through independent study under the guidance of an advisor who is knowledgeable in the field.

  8. Thesis, Research and Practice

    MIT's Department of Mechanical Engineering (MechE) offers a world-class education that combines thorough analysis with hands-on discovery. One of the original six courses offered when MIT was founded in 1865, MechE's faculty and students conduct research that pushes boundaries and provides creative solutions for the world's problems.

  9. Theses and Dissertations--Mechanical Engineering, University of

    MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN, Alireza Babaei. PDF. Impact of spallation and internal radiation on fibrous ablative materials, Raghava Sai Chaitanya Davuluri. PDF. ANISOTROPIC MATERIAL BEHAVIOR OF 3D PRINTED FIBER COMPOSITES, Jordan Garcia. PDF

  10. Thesis Projects (last update November 24, 2023)

    The Honours Thesis research projects listed below are available only to McGill Mechanical Engineering Undergraduate students in the Honours program and registered for MECH 403-404 courses. If you are interested in one of the thesis projects, please send an expression of interest to the contact email provided. Although we do our best to keep this list up-to-date, some projects may no longer be ...

  11. A Guide to Writing a Senior Thesis in Engineering

    If you are unsure if your research project will fulfill a thesis in your area of engineering please reach out early (sophomore or junior year) to your DUS or ADUS in engineering. Biomedical Engineering ADUS: Linsey Moyer, PhD . [email protected]. Electrical Engineering and Mechanical Engineering ADUS: Chris Lombardo . lombardo@seas ...

  12. The Best Mechanical Engineering Dissertation Topics and Titles

    Dissertation Topics in Mechanical Engineering Design and Systems Optimization. Topic 1: Mini powdered metal design and fabrication for mini development of waste aluminium Cannes and fabrication. Topic 2: Interaction between the Fluid, Acoustic, and vibrations. Topic 3: Combustion and Energy Systems.

  13. Theses and Dissertations

    CTFM Seminars. Theses and Dissertations. Industrial Relations. Location. Department of Mechanical Engineering. Engineering Building 1, Room N207. 4226 Martin Luther King Boulevard. Houston, TX 77204-4006. Phone: 713-743-4500.

  14. Engineering thesis and dissertation collection

    Investigating the role of mechanical and structural properties of scaffolds for cartilage tissue engineering . Sturtivant, Alexander (The University of Edinburgh, 2024-03-04) Osteoarthritis is currently measured as the leading cause of disability. It is responsible for significant, social, economic and health costs.

  15. Senior Thesis

    For an A.B. degree, a research thesis is strongly encouraged but not required; a thesis is necessary to be considered for High or Highest Honors. Additionally, a thesis will be particularly useful for students interested in pursuing graduate engineering research. In the S.B. degree programs, every student completes a design thesis as part of the required senior capstone design course (ES 100hf).

  16. PDF Evolution of Trending Topics in Mechanical Engineering Research Theses

    Bachelor of Science in Mechanical Engineering. As new concepts and technologies emerge, researchers in mechanical engineering have focused on various areas of study. This thesis seeks to understand the evolution of research topics over time and identify which subjects have been favored at different points.

  17. What You Need to Know About Becoming a Mechanical Engineering Major

    Mechanical engineering majors learn about motion and energy, and they study fluid, solid and thermal mechanics. They spend time in labs, where they develop problem-solving skills and evaluate and ...

  18. Department of Mechanical Engineering < MIT

    Undergraduate Study. The Department of Mechanical Engineering (MechE) offers three programs of undergraduate study. The first of these, the traditional program that leads to the bachelor's degree in mechanical engineering, is a more structured program that prepares students for a broad range of career choices in the field of mechanical engineering.

  19. Mechanical Engineering

    A computational study on the role of glide plane interaction on the dislocation behavior by means of the Peierls-Naborro model. Author: Garcia Rodriguez, A., 11 Dec 2018. Supervisor: Bormann, F. (Supervisor 1) & Peerlings, R. (Supervisor 2) Student thesis: Master.

  20. Bachelor's Thesis in Mechanical Engineering

    Bachelor's Thesis in Mechanical Engineering (MSKBAC) The bachelor's thesis is an independent project in which you will apply the knowledge acquired during your studies for solving a given assignment. It is through this assignment that you will show your abilities and qualities as a future employee. The assignment will normally be carried out ...

  21. Mechanical Engineering Masters Theses Collection

    Theses from 2014 PDF. New Generator Control Algorithms for Smart-Bladed Wind Turbines to Improve Power Capture in Below Rated Conditions, Bryce B. Aquino, Mechanical Engineering. PDF. UBOT-7: THE DESIGN OF A COMPLIANT DEXTEROUS MOBILE MANIPULATOR, Jonathan Cummings, Mechanical Engineering. PDF

  22. Bachelor Mechanical Engineering

    Bachelor Mechanical Engineering. A sound tech­no­lo­gical basis and a wide ho­ri­zon provide the basis for the work of mech­an­ical en­gin­eers at the in­ter­faces where elec­tron­ics, com­puter sci­ence, mech­an­ics, thermo- dynamics and chem­istry meet and where products, sys­tems and pro­cesses are de­veloped, cal­cu ...

  23. MS Thesis Procedures

    MS Thesis Procedures. The administrative steps for students who write an MS thesis are the following: MS Thesis Proposal. • By the end of the first year identify an advisor. • Select a committee of at least three members of the MAE program. • Set the date with the committee, reserve the conference room, and provide an abstract to the ...

  24. Engineering Thesis Google Slides and PowerPoint template

    Premium Google Slides theme and PowerPoint template. Are you about to defend your Engineering Thesis? We have created a presentation to meet your needs. Download and edit it now and get your formulas ready. This thesis defense presentation has a very modern design. The main hues of the template are yellow and white. You'll find some organic ...