Logo for the Skills Centre

Dissertations and research projects

  • Book a session
  • Planning your research

Developing a theoretical framework

Reflecting on your position, extended literature reviews, presenting qualitative data.

  • Quantitative research
  • Writing up your research project
  • e-learning and books
  • SkillsCheck This link opens in a new window
  • ⬅ Back to Skills Centre This link opens in a new window
  • Review this resource

What is a theoretical framework?

Developing a theoretical framework for your dissertation is one of the key elements of a qualitative research project. Through writing your literature review, you are likely to have identified either a problem that need ‘fixing’ or a gap that your research may begin to fill.

The theoretical framework is your toolbox . In the toolbox are your handy tools: a set of theories, concepts, ideas and hypotheses that you will use to build a solution to the research problem or gap you have identified.

The methodology is the instruction manual: the procedure and steps you have taken, using your chosen tools, to tackle the research problem.

Why do I need a theoretical framework?

Developing a theoretical framework shows that you have thought critically about the different ways to approach your topic, and that you have made a well-reasoned and evidenced decision about which approach will work best. theoretical frameworks are also necessary for solving complex problems or issues from the literature, showing that you have the skills to think creatively and improvise to answer your research questions. they also allow researchers to establish new theories and approaches, that future research may go on to develop., how do i create a theoretical framework for my dissertation.

First, select your tools. You are likely to need a variety of tools in qualitative research – different theories, models or concepts – to help you tackle different parts of your research question.  

An overview of what to include in a theoretical framework: theories, models, ideologies, concepts, assumptions and perspectives.

When deciding what tools would be best for the job of answering your research questions or problem, explore what existing research in your area has used. You may find that there is a ‘standard toolbox’ for qualitative research in your field that you can borrow from or apply to your own research.

You will need to justify why your chosen tools are best for the job of answering your research questions, at what stage they are most relevant, and how they relate to each other. Some theories or models will neatly fit together and appear in the toolboxes of other researchers. However, you may wish to incorporate a model or idea that is not typical for your research area – the ‘odd one out’ in your toolbox. If this is the case, make sure you justify and account for why it is useful to you, and look for ways that it can be used in partnership with the other tools you are using.

You should also be honest about limitations, or where you need to improvise (for example, if the ‘right’ tool or approach doesn’t exist in your area).

This video from the Skills Centre includes an overview and example of how you might create a theoretical framework for your dissertation:

How do I choose the 'right' approach?

When designing your framework and choosing what to include, it can often be difficult to know if you’ve chosen the ‘right’ approach for your research questions. One way to check this is to look for consistency between your objectives, the literature in your framework, and your overall ethos for the research. This means ensuring that the literature you have used not only contributes to answering your research objectives, but that you also use theories and models that are true to your beliefs as a researcher.

Reflecting on your values and your overall ambition for the project can be a helpful step in making these decisions, as it can help you to fully connect your methodology and methods to your research aims.

Should I reflect on my position as a researcher?

If you feel your position as a researcher has influenced your choice of methods or procedure in any way, the methodology is a good place to reflect on this.  Positionality  acknowledges that no researcher is entirely objective: we are all, to some extent, influenced by prior learning, experiences, knowledge, and personal biases. This is particularly true in qualitative research or practice-based research, where the student is acting as a researcher in their own workplace, where they are otherwise considered a practitioner/professional. It's also important to reflect on your positionality if you belong to the same community as your participants where this is the grounds for their involvement in the research (ie. you are a mature student interviewing other mature learners about their experences in higher education). 

The following questions can help you to reflect on your positionality and gauge whether this is an important section to include in your dissertation (for some people, this section isn’t necessary or relevant):

  • How might my personal history influence how I approach the topic?
  • How am I positioned in relation to this knowledge? Am I being influenced by prior learning or knowledge from outside of this course?
  • How does my gender/social class/ ethnicity/ culture influence my positioning in relation to this topic?
  • Do I share any attributes with my participants? Are we part of a s hared community? How might this have influenced our relationship and my role in interviews/observations?
  • Am I invested in the outcomes on a personal level? Who is this research for and who will feel the benefits?
One option for qualitative projects is to write an extended literature review. This type of project does not require you to collect any new data. Instead, you should focus on synthesising a broad range of literature to offer a new perspective on a research problem or question.  

The main difference between an extended literature review and a dissertation where primary data is collected, is in the presentation of the methodology, results and discussion sections. This is because extended literature reviews do not actively involve participants or primary data collection, so there is no need to outline a procedure for data collection (the methodology) or to present and interpret ‘data’ (in the form of interview transcripts, numerical data, observations etc.) You will have much more freedom to decide which sections of the dissertation should be combined, and whether new chapters or sections should be added.

Here is an overview of a common structure for an extended literature review:

A structure for the extended literature review, showing the results divided into multiple themed chapters.

Introduction

  • Provide background information and context to set the ‘backdrop’ for your project.
  • Explain the value and relevance of your research in this context. Outline what do you hope to contribute with your dissertation.
  • Clarify a specific area of focus.
  • Introduce your research aims (or problem) and objectives.

Literature review

You will need to write a short, overview literature review to introduce the main theories, concepts and key research areas that you will explore in your dissertation. This set of texts – which may be theoretical, research-based, practice-based or policies – form your theoretical framework. In other words, by bringing these texts together in the literature review, you are creating a lens that you can then apply to more focused examples or scenarios in your discussion chapters.

Methodology

As you will not be collecting primary data, your methodology will be quite different from a typical dissertation. You will need to set out the process and procedure you used to find and narrow down your literature. This is also known as a search strategy.

Including your search strategy

A search strategy explains how you have narrowed down your literature to identify key studies and areas of focus. This often takes the form of a search strategy table, included as an appendix at the end of the dissertation. If included, this section takes the place of the traditional 'methodology' section.

If you choose to include a search strategy table, you should also give an overview of your reading process in the main body of the dissertation.  Think of this as a chronology of the practical steps you took and your justification for doing so at each stage, such as:

  • Your key terms, alternatives and synonyms, and any terms that you chose to exclude.
  • Your choice and combination of databases;
  • Your inclusion/exclusion criteria, when they were applied and why. This includes filters such as language of publication, date, and country of origin;
  • You should also explain which terms you combined to form search phrases and your use of Boolean searching (AND, OR, NOT);
  • Your use of citation searching (selecting articles from the bibliography of a chosen journal article to further your search).
  • Your use of any search models, such as PICO and SPIDER to help shape your approach.
  • Search strategy template A simple template for recording your literature searching. This can be included as an appendix to show your search strategy.

The discussion section of an extended literature review is the most flexible in terms of structure. Think of this section as a series of short case studies or ‘windows’ on your research. In this section you will apply the theoretical framework you formed in the literature review – a combination of theories, models and ideas that explain your approach to the topic – to a series of different examples and scenarios. These are usually presented as separate discussion ‘chapters’ in the dissertation, in an order that you feel best fits your argument.

Think about an order for these discussion sections or chapters that helps to tell the story of your research. One common approach is to structure these sections by common themes or concepts that help to draw your sources together. You might also opt for a chronological structure if your dissertation aims to show change or development over time. Another option is to deliberately show where there is a lack of chronology or narrative across your case studies, by ordering them in a fragmentary order! You will be able to reflect upon the structure of these chapters elsewhere in the dissertation, explaining and defending your decision in the methodology and conclusion.

A summary of your key findings – what you have concluded from your research, and how far you have been able to successfully answer your research questions.

  • Recommendations – for improvements to your own study, for future research in the area, and for your field more widely.
  • Emphasise your contributions to knowledge and what you have achieved.

Alternative structure

Depending on your research aims, and whether you are working with a case-study type approach (where each section of the dissertation considers a different example or concept through the lens established in your literature review), you might opt for one of the following structures:

Splitting the literature review across different chapters:

undefined

This structure allows you to pull apart the traditional literature review, introducing it little by little with each of your themed chapters. This approach works well for dissertations that attempt to show change or difference over time, as the relevant literature for that section or period can be introduced gradually to the reader.

Whichever structure you opt for, remember to explain and justify your approach. A marker will be interested in why you decided on your chosen structure, what it allows you to achieve/brings to the project and what alternatives you considered and rejected in the planning process. Here are some example sentence starters:

In qualitative studies, your results are often presented alongside the discussion, as it is difficult to include this data in a meaningful way without explanation and interpretation. In the dsicussion section, aim to structure your work thematically, moving through the key concepts or ideas that have emerged from your qualitative data. Use extracts from your data collection - interviews, focus groups, observations - to illustrate where these themes are most prominent, and refer back to the sources from your literature review to help draw conclusions. 

Here's an example of how your data could be presented in paragraph format in this section:

Example from  'Reporting and discussing your findings ', Monash University .

  • << Previous: Planning your research
  • Next: Quantitative research >>
  • Last Updated: Apr 17, 2024 1:52 PM
  • URL: https://libguides.shu.ac.uk/researchprojects

Sheffield Hallam Library Signifier

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nuffield Department of Primary Care Health Sciences, University of Oxford

Tips for a qualitative dissertation

Veronika Williams

Veronika Williams

17 October 2017

Tips for students

This blog is part of a series for Evidence-Based Health Care MSc students undertaking their dissertations.

Graphic image of a laptop, mouse, mobile phone, stationery and cup of coffee, viewed from above in primary colours

Undertaking an MSc dissertation in Evidence-Based Health Care (EBHC) may be your first hands-on experience of doing qualitative research. I chatted to Dr. Veronika Williams, an experienced qualitative researcher, and tutor on the EBHC programme, to find out her top tips for producing a high-quality qualitative EBHC thesis.

1) Make the switch from a quantitative to a qualitative mindset

It’s not just about replacing numbers with words. Doing qualitative research requires you to adopt a different way of seeing and interpreting the world around you. Veronika asks her students to reflect on positivist and interpretivist approaches: If you come from a scientific or medical background, positivism is often the unacknowledged status quo. Be open to considering there are alternative ways to generate and understand knowledge.

2) Reflect on your role

Quantitative research strives to produce “clean” data unbiased by the context in which it was generated.  With qualitative methods, this is neither possible nor desirable.  Students should reflect on how their background and personal views shape the way they collect and analyse their data. This will not only add to the transparency of your work but will also help you interpret your findings.

3)  Don’t forget the theory

Qualitative researchers use theories as a lens through which they understand the world around them. Veronika suggests that students consider the theoretical underpinning to their own research at the earliest stages. You can read an article about why theories are useful in qualitative research  here.

4) Think about depth rather than breadth

Qualitative research is all about developing a deep and insightful understanding of the phenomenon/ concept you are studying. Be realistic about what you can achieve given the time constraints of an MSc.  Veronika suggests that collecting and analysing a smaller dataset well is preferable to producing a superficial, rushed analysis of a larger dataset.

5) Blur the boundaries between data collection, analysis and writing up

Veronika strongly recommends keeping a research diary or using memos to jot down your ideas as your research progresses. Not only do these add to your audit trail, these entries will help contribute to your first draft and the process of moving towards theoretical thinking. Qualitative researchers move back and forward between their dataset and manuscript as their ideas develop. This enriches their understanding and allows emerging theories to be explored.

6) Move beyond the descriptive

When analysing interviews, for example, it can be tempting to think that having coded your transcripts you are nearly there. This is not the case!  You need to move beyond the descriptive codes to conceptual themes and theoretical thinking in order to produce a high-quality thesis.  Veronika warns against falling into the pitfall of thinking writing up is, “Two interviews said this whilst three interviewees said that”.

7) It’s not just about the average experience

When analysing your data, consider the outliers or negative cases, for example, those that found the intervention unacceptable.  Although in the minority, these respondents will often provide more meaningful insight into the phenomenon or concept you are trying to study.

8) Bounce ideas

Veronika recommends sharing your emerging ideas and findings with someone else, maybe with a different background or perspective. This isn’t about getting to the “right answer” rather it offers you the chance to refine your thinking.  Be sure, though, to fully acknowledge their contribution in your thesis.

9) Be selective

In can be a challenge to meet the dissertation word limit.  It won’t be possible to present all the themes generated by your dataset so focus! Use quotes from across your dataset that best encapsulate the themes you are presenting.  Display additional data in the appendix.  For example, Veronika suggests illustrating how you moved from your coding framework to your themes.

10) Don’t panic!

There will be a stage during analysis and write up when it seems undoable.  Unlike quantitative researchers who begin analysis with a clear plan, qualitative research is more of a journey. Everything will fall into place by the end.  Be sure, though, to allow yourself enough time to make sense of the rich data qualitative research generates.

Related course:

Qualitative research methods.

Short Course

Grad Coach

How To Write The Results/Findings Chapter

For qualitative studies (dissertations & theses).

By: Jenna Crossley (PhD). Expert Reviewed By: Dr. Eunice Rautenbach | August 2021

So, you’ve collected and analysed your qualitative data, and it’s time to write up your results chapter. But where do you start? In this post, we’ll guide you through the qualitative results chapter (also called the findings chapter), step by step. 

Overview: Qualitative Results Chapter

  • What (exactly) the qualitative results chapter is
  • What to include in your results chapter
  • How to write up your results chapter
  • A few tips and tricks to help you along the way
  • Free results chapter template

What exactly is the results chapter?

The results chapter in a dissertation or thesis (or any formal academic research piece) is where you objectively and neutrally present the findings of your qualitative analysis (or analyses if you used multiple qualitative analysis methods ). This chapter can sometimes be combined with the discussion chapter (where you interpret the data and discuss its meaning), depending on your university’s preference.  We’ll treat the two chapters as separate, as that’s the most common approach.

In contrast to a quantitative results chapter that presents numbers and statistics, a qualitative results chapter presents data primarily in the form of words . But this doesn’t mean that a qualitative study can’t have quantitative elements – you could, for example, present the number of times a theme or topic pops up in your data, depending on the analysis method(s) you adopt.

Adding a quantitative element to your study can add some rigour, which strengthens your results by providing more evidence for your claims. This is particularly common when using qualitative content analysis. Keep in mind though that qualitative research aims to achieve depth, richness and identify nuances , so don’t get tunnel vision by focusing on the numbers. They’re just cream on top in a qualitative analysis.

So, to recap, the results chapter is where you objectively present the findings of your analysis, without interpreting them (you’ll save that for the discussion chapter). With that out the way, let’s take a look at what you should include in your results chapter.

Free template for results section of a dissertation or thesis

What should you include in the results chapter?

As we’ve mentioned, your qualitative results chapter should purely present and describe your results , not interpret them in relation to the existing literature or your research questions . Any speculations or discussion about the implications of your findings should be reserved for your discussion chapter.

In your results chapter, you’ll want to talk about your analysis findings and whether or not they support your hypotheses (if you have any). Naturally, the exact contents of your results chapter will depend on which qualitative analysis method (or methods) you use. For example, if you were to use thematic analysis, you’d detail the themes identified in your analysis, using extracts from the transcripts or text to support your claims.

While you do need to present your analysis findings in some detail, you should avoid dumping large amounts of raw data in this chapter. Instead, focus on presenting the key findings and using a handful of select quotes or text extracts to support each finding . The reams of data and analysis can be relegated to your appendices.

While it’s tempting to include every last detail you found in your qualitative analysis, it is important to make sure that you report only that which is relevant to your research aims, objectives and research questions .  Always keep these three components, as well as your hypotheses (if you have any) front of mind when writing the chapter and use them as a filter to decide what’s relevant and what’s not.

Need a helping hand?

qualitative research thesis example

How do I write the results chapter?

Now that we’ve covered the basics, it’s time to look at how to structure your chapter. Broadly speaking, the results chapter needs to contain three core components – the introduction, the body and the concluding summary. Let’s take a look at each of these.

Section 1: Introduction

The first step is to craft a brief introduction to the chapter. This intro is vital as it provides some context for your findings. In your introduction, you should begin by reiterating your problem statement and research questions and highlight the purpose of your research . Make sure that you spell this out for the reader so that the rest of your chapter is well contextualised.

The next step is to briefly outline the structure of your results chapter. In other words, explain what’s included in the chapter and what the reader can expect. In the results chapter, you want to tell a story that is coherent, flows logically, and is easy to follow , so make sure that you plan your structure out well and convey that structure (at a high level), so that your reader is well oriented.

The introduction section shouldn’t be lengthy. Two or three short paragraphs should be more than adequate. It is merely an introduction and overview, not a summary of the chapter.

Pro Tip – To help you structure your chapter, it can be useful to set up an initial draft with (sub)section headings so that you’re able to easily (re)arrange parts of your chapter. This will also help your reader to follow your results and give your chapter some coherence.  Be sure to use level-based heading styles (e.g. Heading 1, 2, 3 styles) to help the reader differentiate between levels visually. You can find these options in Word (example below).

Heading styles in the results chapter

Section 2: Body

Before we get started on what to include in the body of your chapter, it’s vital to remember that a results section should be completely objective and descriptive, not interpretive . So, be careful not to use words such as, “suggests” or “implies”, as these usually accompany some form of interpretation – that’s reserved for your discussion chapter.

The structure of your body section is very important , so make sure that you plan it out well. When planning out your qualitative results chapter, create sections and subsections so that you can maintain the flow of the story you’re trying to tell. Be sure to systematically and consistently describe each portion of results. Try to adopt a standardised structure for each portion so that you achieve a high level of consistency throughout the chapter.

For qualitative studies, results chapters tend to be structured according to themes , which makes it easier for readers to follow. However, keep in mind that not all results chapters have to be structured in this manner. For example, if you’re conducting a longitudinal study, you may want to structure your chapter chronologically. Similarly, you might structure this chapter based on your theoretical framework . The exact structure of your chapter will depend on the nature of your study , especially your research questions.

As you work through the body of your chapter, make sure that you use quotes to substantiate every one of your claims . You can present these quotes in italics to differentiate them from your own words. A general rule of thumb is to use at least two pieces of evidence per claim, and these should be linked directly to your data. Also, remember that you need to include all relevant results , not just the ones that support your assumptions or initial leanings.

In addition to including quotes, you can also link your claims to the data by using appendices , which you should reference throughout your text. When you reference, make sure that you include both the name/number of the appendix , as well as the line(s) from which you drew your data.

As referencing styles can vary greatly, be sure to look up the appendix referencing conventions of your university’s prescribed style (e.g. APA , Harvard, etc) and keep this consistent throughout your chapter.

Section 3: Concluding summary

The concluding summary is very important because it summarises your key findings and lays the foundation for the discussion chapter . Keep in mind that some readers may skip directly to this section (from the introduction section), so make sure that it can be read and understood well in isolation.

In this section, you need to remind the reader of the key findings. That is, the results that directly relate to your research questions and that you will build upon in your discussion chapter. Remember, your reader has digested a lot of information in this chapter, so you need to use this section to remind them of the most important takeaways.

Importantly, the concluding summary should not present any new information and should only describe what you’ve already presented in your chapter. Keep it concise – you’re not summarising the whole chapter, just the essentials.

Tips for writing an A-grade results chapter

Now that you’ve got a clear picture of what the qualitative results chapter is all about, here are some quick tips and reminders to help you craft a high-quality chapter:

  • Your results chapter should be written in the past tense . You’ve done the work already, so you want to tell the reader what you found , not what you are currently finding .
  • Make sure that you review your work multiple times and check that every claim is adequately backed up by evidence . Aim for at least two examples per claim, and make use of an appendix to reference these.
  • When writing up your results, make sure that you stick to only what is relevant . Don’t waste time on data that are not relevant to your research objectives and research questions.
  • Use headings and subheadings to create an intuitive, easy to follow piece of writing. Make use of Microsoft Word’s “heading styles” and be sure to use them consistently.
  • When referring to numerical data, tables and figures can provide a useful visual aid. When using these, make sure that they can be read and understood independent of your body text (i.e. that they can stand-alone). To this end, use clear, concise labels for each of your tables or figures and make use of colours to code indicate differences or hierarchy.
  • Similarly, when you’re writing up your chapter, it can be useful to highlight topics and themes in different colours . This can help you to differentiate between your data if you get a bit overwhelmed and will also help you to ensure that your results flow logically and coherently.

If you have any questions, leave a comment below and we’ll do our best to help. If you’d like 1-on-1 help with your results chapter (or any chapter of your dissertation or thesis), check out our private dissertation coaching service here or book a free initial consultation to discuss how we can help you.

qualitative research thesis example

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Quantitative results chapter in a dissertation

20 Comments

David Person

This was extremely helpful. Thanks a lot guys

Aditi

Hi, thanks for the great research support platform created by the gradcoach team!

I wanted to ask- While “suggests” or “implies” are interpretive terms, what terms could we use for the results chapter? Could you share some examples of descriptive terms?

TcherEva

I think that instead of saying, ‘The data suggested, or The data implied,’ you can say, ‘The Data showed or revealed, or illustrated or outlined’…If interview data, you may say Jane Doe illuminated or elaborated, or Jane Doe described… or Jane Doe expressed or stated.

Llala Phoshoko

I found this article very useful. Thank you very much for the outstanding work you are doing.

Oliwia

What if i have 3 different interviewees answering the same interview questions? Should i then present the results in form of the table with the division on the 3 perspectives or rather give a results in form of the text and highlight who said what?

Rea

I think this tabular representation of results is a great idea. I am doing it too along with the text. Thanks

Nomonde Mteto

That was helpful was struggling to separate the discussion from the findings

Esther Peter.

this was very useful, Thank you.

tendayi

Very helpful, I am confident to write my results chapter now.

Sha

It is so helpful! It is a good job. Thank you very much!

Nabil

Very useful, well explained. Many thanks.

Agnes Ngatuni

Hello, I appreciate the way you provided a supportive comments about qualitative results presenting tips

Carol Ch

I loved this! It explains everything needed, and it has helped me better organize my thoughts. What words should I not use while writing my results section, other than subjective ones.

Hend

Thanks a lot, it is really helpful

Anna milanga

Thank you so much dear, i really appropriate your nice explanations about this.

Wid

Thank you so much for this! I was wondering if anyone could help with how to prproperly integrate quotations (Excerpts) from interviews in the finding chapter in a qualitative research. Please GradCoach, address this issue and provide examples.

nk

what if I’m not doing any interviews myself and all the information is coming from case studies that have already done the research.

FAITH NHARARA

Very helpful thank you.

Philip

This was very helpful as I was wondering how to structure this part of my dissertation, to include the quotes… Thanks for this explanation

Aleks

This is very helpful, thanks! I am required to write up my results chapters with the discussion in each of them – any tips and tricks for this strategy?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Neurol Res Pract

Logo of neurrp

How to use and assess qualitative research methods

Loraine busetto.

1 Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany

Wolfgang Wick

2 Clinical Cooperation Unit Neuro-Oncology, German Cancer Research Center, Heidelberg, Germany

Christoph Gumbinger

Associated data.

Not applicable.

This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions, and focussing on intervention improvement. The most common methods of data collection are document study, (non-) participant observations, semi-structured interviews and focus groups. For data analysis, field-notes and audio-recordings are transcribed into protocols and transcripts, and coded using qualitative data management software. Criteria such as checklists, reflexivity, sampling strategies, piloting, co-coding, member-checking and stakeholder involvement can be used to enhance and assess the quality of the research conducted. Using qualitative in addition to quantitative designs will equip us with better tools to address a greater range of research problems, and to fill in blind spots in current neurological research and practice.

The aim of this paper is to provide an overview of qualitative research methods, including hands-on information on how they can be used, reported and assessed. This article is intended for beginning qualitative researchers in the health sciences as well as experienced quantitative researchers who wish to broaden their understanding of qualitative research.

What is qualitative research?

Qualitative research is defined as “the study of the nature of phenomena”, including “their quality, different manifestations, the context in which they appear or the perspectives from which they can be perceived” , but excluding “their range, frequency and place in an objectively determined chain of cause and effect” [ 1 ]. This formal definition can be complemented with a more pragmatic rule of thumb: qualitative research generally includes data in form of words rather than numbers [ 2 ].

Why conduct qualitative research?

Because some research questions cannot be answered using (only) quantitative methods. For example, one Australian study addressed the issue of why patients from Aboriginal communities often present late or not at all to specialist services offered by tertiary care hospitals. Using qualitative interviews with patients and staff, it found one of the most significant access barriers to be transportation problems, including some towns and communities simply not having a bus service to the hospital [ 3 ]. A quantitative study could have measured the number of patients over time or even looked at possible explanatory factors – but only those previously known or suspected to be of relevance. To discover reasons for observed patterns, especially the invisible or surprising ones, qualitative designs are needed.

While qualitative research is common in other fields, it is still relatively underrepresented in health services research. The latter field is more traditionally rooted in the evidence-based-medicine paradigm, as seen in " research that involves testing the effectiveness of various strategies to achieve changes in clinical practice, preferably applying randomised controlled trial study designs (...) " [ 4 ]. This focus on quantitative research and specifically randomised controlled trials (RCT) is visible in the idea of a hierarchy of research evidence which assumes that some research designs are objectively better than others, and that choosing a "lesser" design is only acceptable when the better ones are not practically or ethically feasible [ 5 , 6 ]. Others, however, argue that an objective hierarchy does not exist, and that, instead, the research design and methods should be chosen to fit the specific research question at hand – "questions before methods" [ 2 , 7 – 9 ]. This means that even when an RCT is possible, some research problems require a different design that is better suited to addressing them. Arguing in JAMA, Berwick uses the example of rapid response teams in hospitals, which he describes as " a complex, multicomponent intervention – essentially a process of social change" susceptible to a range of different context factors including leadership or organisation history. According to him, "[in] such complex terrain, the RCT is an impoverished way to learn. Critics who use it as a truth standard in this context are incorrect" [ 8 ] . Instead of limiting oneself to RCTs, Berwick recommends embracing a wider range of methods , including qualitative ones, which for "these specific applications, (...) are not compromises in learning how to improve; they are superior" [ 8 ].

Research problems that can be approached particularly well using qualitative methods include assessing complex multi-component interventions or systems (of change), addressing questions beyond “what works”, towards “what works for whom when, how and why”, and focussing on intervention improvement rather than accreditation [ 7 , 9 – 12 ]. Using qualitative methods can also help shed light on the “softer” side of medical treatment. For example, while quantitative trials can measure the costs and benefits of neuro-oncological treatment in terms of survival rates or adverse effects, qualitative research can help provide a better understanding of patient or caregiver stress, visibility of illness or out-of-pocket expenses.

How to conduct qualitative research?

Given that qualitative research is characterised by flexibility, openness and responsivity to context, the steps of data collection and analysis are not as separate and consecutive as they tend to be in quantitative research [ 13 , 14 ]. As Fossey puts it : “sampling, data collection, analysis and interpretation are related to each other in a cyclical (iterative) manner, rather than following one after another in a stepwise approach” [ 15 ]. The researcher can make educated decisions with regard to the choice of method, how they are implemented, and to which and how many units they are applied [ 13 ]. As shown in Fig.  1 , this can involve several back-and-forth steps between data collection and analysis where new insights and experiences can lead to adaption and expansion of the original plan. Some insights may also necessitate a revision of the research question and/or the research design as a whole. The process ends when saturation is achieved, i.e. when no relevant new information can be found (see also below: sampling and saturation). For reasons of transparency, it is essential for all decisions as well as the underlying reasoning to be well-documented.

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig1_HTML.jpg

Iterative research process

While it is not always explicitly addressed, qualitative methods reflect a different underlying research paradigm than quantitative research (e.g. constructivism or interpretivism as opposed to positivism). The choice of methods can be based on the respective underlying substantive theory or theoretical framework used by the researcher [ 2 ].

Data collection

The methods of qualitative data collection most commonly used in health research are document study, observations, semi-structured interviews and focus groups [ 1 , 14 , 16 , 17 ].

Document study

Document study (also called document analysis) refers to the review by the researcher of written materials [ 14 ]. These can include personal and non-personal documents such as archives, annual reports, guidelines, policy documents, diaries or letters.

Observations

Observations are particularly useful to gain insights into a certain setting and actual behaviour – as opposed to reported behaviour or opinions [ 13 ]. Qualitative observations can be either participant or non-participant in nature. In participant observations, the observer is part of the observed setting, for example a nurse working in an intensive care unit [ 18 ]. In non-participant observations, the observer is “on the outside looking in”, i.e. present in but not part of the situation, trying not to influence the setting by their presence. Observations can be planned (e.g. for 3 h during the day or night shift) or ad hoc (e.g. as soon as a stroke patient arrives at the emergency room). During the observation, the observer takes notes on everything or certain pre-determined parts of what is happening around them, for example focusing on physician-patient interactions or communication between different professional groups. Written notes can be taken during or after the observations, depending on feasibility (which is usually lower during participant observations) and acceptability (e.g. when the observer is perceived to be judging the observed). Afterwards, these field notes are transcribed into observation protocols. If more than one observer was involved, field notes are taken independently, but notes can be consolidated into one protocol after discussions. Advantages of conducting observations include minimising the distance between the researcher and the researched, the potential discovery of topics that the researcher did not realise were relevant and gaining deeper insights into the real-world dimensions of the research problem at hand [ 18 ].

Semi-structured interviews

Hijmans & Kuyper describe qualitative interviews as “an exchange with an informal character, a conversation with a goal” [ 19 ]. Interviews are used to gain insights into a person’s subjective experiences, opinions and motivations – as opposed to facts or behaviours [ 13 ]. Interviews can be distinguished by the degree to which they are structured (i.e. a questionnaire), open (e.g. free conversation or autobiographical interviews) or semi-structured [ 2 , 13 ]. Semi-structured interviews are characterized by open-ended questions and the use of an interview guide (or topic guide/list) in which the broad areas of interest, sometimes including sub-questions, are defined [ 19 ]. The pre-defined topics in the interview guide can be derived from the literature, previous research or a preliminary method of data collection, e.g. document study or observations. The topic list is usually adapted and improved at the start of the data collection process as the interviewer learns more about the field [ 20 ]. Across interviews the focus on the different (blocks of) questions may differ and some questions may be skipped altogether (e.g. if the interviewee is not able or willing to answer the questions or for concerns about the total length of the interview) [ 20 ]. Qualitative interviews are usually not conducted in written format as it impedes on the interactive component of the method [ 20 ]. In comparison to written surveys, qualitative interviews have the advantage of being interactive and allowing for unexpected topics to emerge and to be taken up by the researcher. This can also help overcome a provider or researcher-centred bias often found in written surveys, which by nature, can only measure what is already known or expected to be of relevance to the researcher. Interviews can be audio- or video-taped; but sometimes it is only feasible or acceptable for the interviewer to take written notes [ 14 , 16 , 20 ].

Focus groups

Focus groups are group interviews to explore participants’ expertise and experiences, including explorations of how and why people behave in certain ways [ 1 ]. Focus groups usually consist of 6–8 people and are led by an experienced moderator following a topic guide or “script” [ 21 ]. They can involve an observer who takes note of the non-verbal aspects of the situation, possibly using an observation guide [ 21 ]. Depending on researchers’ and participants’ preferences, the discussions can be audio- or video-taped and transcribed afterwards [ 21 ]. Focus groups are useful for bringing together homogeneous (to a lesser extent heterogeneous) groups of participants with relevant expertise and experience on a given topic on which they can share detailed information [ 21 ]. Focus groups are a relatively easy, fast and inexpensive method to gain access to information on interactions in a given group, i.e. “the sharing and comparing” among participants [ 21 ]. Disadvantages include less control over the process and a lesser extent to which each individual may participate. Moreover, focus group moderators need experience, as do those tasked with the analysis of the resulting data. Focus groups can be less appropriate for discussing sensitive topics that participants might be reluctant to disclose in a group setting [ 13 ]. Moreover, attention must be paid to the emergence of “groupthink” as well as possible power dynamics within the group, e.g. when patients are awed or intimidated by health professionals.

Choosing the “right” method

As explained above, the school of thought underlying qualitative research assumes no objective hierarchy of evidence and methods. This means that each choice of single or combined methods has to be based on the research question that needs to be answered and a critical assessment with regard to whether or to what extent the chosen method can accomplish this – i.e. the “fit” between question and method [ 14 ]. It is necessary for these decisions to be documented when they are being made, and to be critically discussed when reporting methods and results.

Let us assume that our research aim is to examine the (clinical) processes around acute endovascular treatment (EVT), from the patient’s arrival at the emergency room to recanalization, with the aim to identify possible causes for delay and/or other causes for sub-optimal treatment outcome. As a first step, we could conduct a document study of the relevant standard operating procedures (SOPs) for this phase of care – are they up-to-date and in line with current guidelines? Do they contain any mistakes, irregularities or uncertainties that could cause delays or other problems? Regardless of the answers to these questions, the results have to be interpreted based on what they are: a written outline of what care processes in this hospital should look like. If we want to know what they actually look like in practice, we can conduct observations of the processes described in the SOPs. These results can (and should) be analysed in themselves, but also in comparison to the results of the document analysis, especially as regards relevant discrepancies. Do the SOPs outline specific tests for which no equipment can be observed or tasks to be performed by specialized nurses who are not present during the observation? It might also be possible that the written SOP is outdated, but the actual care provided is in line with current best practice. In order to find out why these discrepancies exist, it can be useful to conduct interviews. Are the physicians simply not aware of the SOPs (because their existence is limited to the hospital’s intranet) or do they actively disagree with them or does the infrastructure make it impossible to provide the care as described? Another rationale for adding interviews is that some situations (or all of their possible variations for different patient groups or the day, night or weekend shift) cannot practically or ethically be observed. In this case, it is possible to ask those involved to report on their actions – being aware that this is not the same as the actual observation. A senior physician’s or hospital manager’s description of certain situations might differ from a nurse’s or junior physician’s one, maybe because they intentionally misrepresent facts or maybe because different aspects of the process are visible or important to them. In some cases, it can also be relevant to consider to whom the interviewee is disclosing this information – someone they trust, someone they are otherwise not connected to, or someone they suspect or are aware of being in a potentially “dangerous” power relationship to them. Lastly, a focus group could be conducted with representatives of the relevant professional groups to explore how and why exactly they provide care around EVT. The discussion might reveal discrepancies (between SOPs and actual care or between different physicians) and motivations to the researchers as well as to the focus group members that they might not have been aware of themselves. For the focus group to deliver relevant information, attention has to be paid to its composition and conduct, for example, to make sure that all participants feel safe to disclose sensitive or potentially problematic information or that the discussion is not dominated by (senior) physicians only. The resulting combination of data collection methods is shown in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig2_HTML.jpg

Possible combination of data collection methods

Attributions for icons: “Book” by Serhii Smirnov, “Interview” by Adrien Coquet, FR, “Magnifying Glass” by anggun, ID, “Business communication” by Vectors Market; all from the Noun Project

The combination of multiple data source as described for this example can be referred to as “triangulation”, in which multiple measurements are carried out from different angles to achieve a more comprehensive understanding of the phenomenon under study [ 22 , 23 ].

Data analysis

To analyse the data collected through observations, interviews and focus groups these need to be transcribed into protocols and transcripts (see Fig.  3 ). Interviews and focus groups can be transcribed verbatim , with or without annotations for behaviour (e.g. laughing, crying, pausing) and with or without phonetic transcription of dialects and filler words, depending on what is expected or known to be relevant for the analysis. In the next step, the protocols and transcripts are coded , that is, marked (or tagged, labelled) with one or more short descriptors of the content of a sentence or paragraph [ 2 , 15 , 23 ]. Jansen describes coding as “connecting the raw data with “theoretical” terms” [ 20 ]. In a more practical sense, coding makes raw data sortable. This makes it possible to extract and examine all segments describing, say, a tele-neurology consultation from multiple data sources (e.g. SOPs, emergency room observations, staff and patient interview). In a process of synthesis and abstraction, the codes are then grouped, summarised and/or categorised [ 15 , 20 ]. The end product of the coding or analysis process is a descriptive theory of the behavioural pattern under investigation [ 20 ]. The coding process is performed using qualitative data management software, the most common ones being InVivo, MaxQDA and Atlas.ti. It should be noted that these are data management tools which support the analysis performed by the researcher(s) [ 14 ].

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig3_HTML.jpg

From data collection to data analysis

Attributions for icons: see Fig. ​ Fig.2, 2 , also “Speech to text” by Trevor Dsouza, “Field Notes” by Mike O’Brien, US, “Voice Record” by ProSymbols, US, “Inspection” by Made, AU, and “Cloud” by Graphic Tigers; all from the Noun Project

How to report qualitative research?

Protocols of qualitative research can be published separately and in advance of the study results. However, the aim is not the same as in RCT protocols, i.e. to pre-define and set in stone the research questions and primary or secondary endpoints. Rather, it is a way to describe the research methods in detail, which might not be possible in the results paper given journals’ word limits. Qualitative research papers are usually longer than their quantitative counterparts to allow for deep understanding and so-called “thick description”. In the methods section, the focus is on transparency of the methods used, including why, how and by whom they were implemented in the specific study setting, so as to enable a discussion of whether and how this may have influenced data collection, analysis and interpretation. The results section usually starts with a paragraph outlining the main findings, followed by more detailed descriptions of, for example, the commonalities, discrepancies or exceptions per category [ 20 ]. Here it is important to support main findings by relevant quotations, which may add information, context, emphasis or real-life examples [ 20 , 23 ]. It is subject to debate in the field whether it is relevant to state the exact number or percentage of respondents supporting a certain statement (e.g. “Five interviewees expressed negative feelings towards XYZ”) [ 21 ].

How to combine qualitative with quantitative research?

Qualitative methods can be combined with other methods in multi- or mixed methods designs, which “[employ] two or more different methods [ …] within the same study or research program rather than confining the research to one single method” [ 24 ]. Reasons for combining methods can be diverse, including triangulation for corroboration of findings, complementarity for illustration and clarification of results, expansion to extend the breadth and range of the study, explanation of (unexpected) results generated with one method with the help of another, or offsetting the weakness of one method with the strength of another [ 1 , 17 , 24 – 26 ]. The resulting designs can be classified according to when, why and how the different quantitative and/or qualitative data strands are combined. The three most common types of mixed method designs are the convergent parallel design , the explanatory sequential design and the exploratory sequential design. The designs with examples are shown in Fig.  4 .

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig4_HTML.jpg

Three common mixed methods designs

In the convergent parallel design, a qualitative study is conducted in parallel to and independently of a quantitative study, and the results of both studies are compared and combined at the stage of interpretation of results. Using the above example of EVT provision, this could entail setting up a quantitative EVT registry to measure process times and patient outcomes in parallel to conducting the qualitative research outlined above, and then comparing results. Amongst other things, this would make it possible to assess whether interview respondents’ subjective impressions of patients receiving good care match modified Rankin Scores at follow-up, or whether observed delays in care provision are exceptions or the rule when compared to door-to-needle times as documented in the registry. In the explanatory sequential design, a quantitative study is carried out first, followed by a qualitative study to help explain the results from the quantitative study. This would be an appropriate design if the registry alone had revealed relevant delays in door-to-needle times and the qualitative study would be used to understand where and why these occurred, and how they could be improved. In the exploratory design, the qualitative study is carried out first and its results help informing and building the quantitative study in the next step [ 26 ]. If the qualitative study around EVT provision had shown a high level of dissatisfaction among the staff members involved, a quantitative questionnaire investigating staff satisfaction could be set up in the next step, informed by the qualitative study on which topics dissatisfaction had been expressed. Amongst other things, the questionnaire design would make it possible to widen the reach of the research to more respondents from different (types of) hospitals, regions, countries or settings, and to conduct sub-group analyses for different professional groups.

How to assess qualitative research?

A variety of assessment criteria and lists have been developed for qualitative research, ranging in their focus and comprehensiveness [ 14 , 17 , 27 ]. However, none of these has been elevated to the “gold standard” in the field. In the following, we therefore focus on a set of commonly used assessment criteria that, from a practical standpoint, a researcher can look for when assessing a qualitative research report or paper.

Assessors should check the authors’ use of and adherence to the relevant reporting checklists (e.g. Standards for Reporting Qualitative Research (SRQR)) to make sure all items that are relevant for this type of research are addressed [ 23 , 28 ]. Discussions of quantitative measures in addition to or instead of these qualitative measures can be a sign of lower quality of the research (paper). Providing and adhering to a checklist for qualitative research contributes to an important quality criterion for qualitative research, namely transparency [ 15 , 17 , 23 ].

Reflexivity

While methodological transparency and complete reporting is relevant for all types of research, some additional criteria must be taken into account for qualitative research. This includes what is called reflexivity, i.e. sensitivity to the relationship between the researcher and the researched, including how contact was established and maintained, or the background and experience of the researcher(s) involved in data collection and analysis. Depending on the research question and population to be researched this can be limited to professional experience, but it may also include gender, age or ethnicity [ 17 , 27 ]. These details are relevant because in qualitative research, as opposed to quantitative research, the researcher as a person cannot be isolated from the research process [ 23 ]. It may influence the conversation when an interviewed patient speaks to an interviewer who is a physician, or when an interviewee is asked to discuss a gynaecological procedure with a male interviewer, and therefore the reader must be made aware of these details [ 19 ].

Sampling and saturation

The aim of qualitative sampling is for all variants of the objects of observation that are deemed relevant for the study to be present in the sample “ to see the issue and its meanings from as many angles as possible” [ 1 , 16 , 19 , 20 , 27 ] , and to ensure “information-richness [ 15 ]. An iterative sampling approach is advised, in which data collection (e.g. five interviews) is followed by data analysis, followed by more data collection to find variants that are lacking in the current sample. This process continues until no new (relevant) information can be found and further sampling becomes redundant – which is called saturation [ 1 , 15 ] . In other words: qualitative data collection finds its end point not a priori , but when the research team determines that saturation has been reached [ 29 , 30 ].

This is also the reason why most qualitative studies use deliberate instead of random sampling strategies. This is generally referred to as “ purposive sampling” , in which researchers pre-define which types of participants or cases they need to include so as to cover all variations that are expected to be of relevance, based on the literature, previous experience or theory (i.e. theoretical sampling) [ 14 , 20 ]. Other types of purposive sampling include (but are not limited to) maximum variation sampling, critical case sampling or extreme or deviant case sampling [ 2 ]. In the above EVT example, a purposive sample could include all relevant professional groups and/or all relevant stakeholders (patients, relatives) and/or all relevant times of observation (day, night and weekend shift).

Assessors of qualitative research should check whether the considerations underlying the sampling strategy were sound and whether or how researchers tried to adapt and improve their strategies in stepwise or cyclical approaches between data collection and analysis to achieve saturation [ 14 ].

Good qualitative research is iterative in nature, i.e. it goes back and forth between data collection and analysis, revising and improving the approach where necessary. One example of this are pilot interviews, where different aspects of the interview (especially the interview guide, but also, for example, the site of the interview or whether the interview can be audio-recorded) are tested with a small number of respondents, evaluated and revised [ 19 ]. In doing so, the interviewer learns which wording or types of questions work best, or which is the best length of an interview with patients who have trouble concentrating for an extended time. Of course, the same reasoning applies to observations or focus groups which can also be piloted.

Ideally, coding should be performed by at least two researchers, especially at the beginning of the coding process when a common approach must be defined, including the establishment of a useful coding list (or tree), and when a common meaning of individual codes must be established [ 23 ]. An initial sub-set or all transcripts can be coded independently by the coders and then compared and consolidated after regular discussions in the research team. This is to make sure that codes are applied consistently to the research data.

Member checking

Member checking, also called respondent validation , refers to the practice of checking back with study respondents to see if the research is in line with their views [ 14 , 27 ]. This can happen after data collection or analysis or when first results are available [ 23 ]. For example, interviewees can be provided with (summaries of) their transcripts and asked whether they believe this to be a complete representation of their views or whether they would like to clarify or elaborate on their responses [ 17 ]. Respondents’ feedback on these issues then becomes part of the data collection and analysis [ 27 ].

Stakeholder involvement

In those niches where qualitative approaches have been able to evolve and grow, a new trend has seen the inclusion of patients and their representatives not only as study participants (i.e. “members”, see above) but as consultants to and active participants in the broader research process [ 31 – 33 ]. The underlying assumption is that patients and other stakeholders hold unique perspectives and experiences that add value beyond their own single story, making the research more relevant and beneficial to researchers, study participants and (future) patients alike [ 34 , 35 ]. Using the example of patients on or nearing dialysis, a recent scoping review found that 80% of clinical research did not address the top 10 research priorities identified by patients and caregivers [ 32 , 36 ]. In this sense, the involvement of the relevant stakeholders, especially patients and relatives, is increasingly being seen as a quality indicator in and of itself.

How not to assess qualitative research

The above overview does not include certain items that are routine in assessments of quantitative research. What follows is a non-exhaustive, non-representative, experience-based list of the quantitative criteria often applied to the assessment of qualitative research, as well as an explanation of the limited usefulness of these endeavours.

Protocol adherence

Given the openness and flexibility of qualitative research, it should not be assessed by how well it adheres to pre-determined and fixed strategies – in other words: its rigidity. Instead, the assessor should look for signs of adaptation and refinement based on lessons learned from earlier steps in the research process.

Sample size

For the reasons explained above, qualitative research does not require specific sample sizes, nor does it require that the sample size be determined a priori [ 1 , 14 , 27 , 37 – 39 ]. Sample size can only be a useful quality indicator when related to the research purpose, the chosen methodology and the composition of the sample, i.e. who was included and why.

Randomisation

While some authors argue that randomisation can be used in qualitative research, this is not commonly the case, as neither its feasibility nor its necessity or usefulness has been convincingly established for qualitative research [ 13 , 27 ]. Relevant disadvantages include the negative impact of a too large sample size as well as the possibility (or probability) of selecting “ quiet, uncooperative or inarticulate individuals ” [ 17 ]. Qualitative studies do not use control groups, either.

Interrater reliability, variability and other “objectivity checks”

The concept of “interrater reliability” is sometimes used in qualitative research to assess to which extent the coding approach overlaps between the two co-coders. However, it is not clear what this measure tells us about the quality of the analysis [ 23 ]. This means that these scores can be included in qualitative research reports, preferably with some additional information on what the score means for the analysis, but it is not a requirement. Relatedly, it is not relevant for the quality or “objectivity” of qualitative research to separate those who recruited the study participants and collected and analysed the data. Experiences even show that it might be better to have the same person or team perform all of these tasks [ 20 ]. First, when researchers introduce themselves during recruitment this can enhance trust when the interview takes place days or weeks later with the same researcher. Second, when the audio-recording is transcribed for analysis, the researcher conducting the interviews will usually remember the interviewee and the specific interview situation during data analysis. This might be helpful in providing additional context information for interpretation of data, e.g. on whether something might have been meant as a joke [ 18 ].

Not being quantitative research

Being qualitative research instead of quantitative research should not be used as an assessment criterion if it is used irrespectively of the research problem at hand. Similarly, qualitative research should not be required to be combined with quantitative research per se – unless mixed methods research is judged as inherently better than single-method research. In this case, the same criterion should be applied for quantitative studies without a qualitative component.

The main take-away points of this paper are summarised in Table ​ Table1. 1 . We aimed to show that, if conducted well, qualitative research can answer specific research questions that cannot to be adequately answered using (only) quantitative designs. Seeing qualitative and quantitative methods as equal will help us become more aware and critical of the “fit” between the research problem and our chosen methods: I can conduct an RCT to determine the reasons for transportation delays of acute stroke patients – but should I? It also provides us with a greater range of tools to tackle a greater range of research problems more appropriately and successfully, filling in the blind spots on one half of the methodological spectrum to better address the whole complexity of neurological research and practice.

Take-away-points

Acknowledgements

Abbreviations, authors’ contributions.

LB drafted the manuscript; WW and CG revised the manuscript; all authors approved the final versions.

no external funding.

Availability of data and materials

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Is Qualitative Research? | Methods & Examples

What Is Qualitative Research? | Methods & Examples

Published on 4 April 2022 by Pritha Bhandari . Revised on 30 January 2023.

Qualitative research involves collecting and analysing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research.

Qualitative research is the opposite of quantitative research , which involves collecting and analysing numerical data for statistical analysis.

Qualitative research is commonly used in the humanities and social sciences, in subjects such as anthropology, sociology, education, health sciences, and history.

  • How does social media shape body image in teenagers?
  • How do children and adults interpret healthy eating in the UK?
  • What factors influence employee retention in a large organisation?
  • How is anxiety experienced around the world?
  • How can teachers integrate social issues into science curriculums?

Table of contents

Approaches to qualitative research, qualitative research methods, qualitative data analysis, advantages of qualitative research, disadvantages of qualitative research, frequently asked questions about qualitative research.

Qualitative research is used to understand how people experience the world. While there are many approaches to qualitative research, they tend to be flexible and focus on retaining rich meaning when interpreting data.

Common approaches include grounded theory, ethnography, action research, phenomenological research, and narrative research. They share some similarities, but emphasise different aims and perspectives.

Prevent plagiarism, run a free check.

Each of the research approaches involve using one or more data collection methods . These are some of the most common qualitative methods:

  • Observations: recording what you have seen, heard, or encountered in detailed field notes.
  • Interviews:  personally asking people questions in one-on-one conversations.
  • Focus groups: asking questions and generating discussion among a group of people.
  • Surveys : distributing questionnaires with open-ended questions.
  • Secondary research: collecting existing data in the form of texts, images, audio or video recordings, etc.
  • You take field notes with observations and reflect on your own experiences of the company culture.
  • You distribute open-ended surveys to employees across all the company’s offices by email to find out if the culture varies across locations.
  • You conduct in-depth interviews with employees in your office to learn about their experiences and perspectives in greater detail.

Qualitative researchers often consider themselves ‘instruments’ in research because all observations, interpretations and analyses are filtered through their own personal lens.

For this reason, when writing up your methodology for qualitative research, it’s important to reflect on your approach and to thoroughly explain the choices you made in collecting and analysing the data.

Qualitative data can take the form of texts, photos, videos and audio. For example, you might be working with interview transcripts, survey responses, fieldnotes, or recordings from natural settings.

Most types of qualitative data analysis share the same five steps:

  • Prepare and organise your data. This may mean transcribing interviews or typing up fieldnotes.
  • Review and explore your data. Examine the data for patterns or repeated ideas that emerge.
  • Develop a data coding system. Based on your initial ideas, establish a set of codes that you can apply to categorise your data.
  • Assign codes to the data. For example, in qualitative survey analysis, this may mean going through each participant’s responses and tagging them with codes in a spreadsheet. As you go through your data, you can create new codes to add to your system if necessary.
  • Identify recurring themes. Link codes together into cohesive, overarching themes.

There are several specific approaches to analysing qualitative data. Although these methods share similar processes, they emphasise different concepts.

Qualitative research often tries to preserve the voice and perspective of participants and can be adjusted as new research questions arise. Qualitative research is good for:

  • Flexibility

The data collection and analysis process can be adapted as new ideas or patterns emerge. They are not rigidly decided beforehand.

  • Natural settings

Data collection occurs in real-world contexts or in naturalistic ways.

  • Meaningful insights

Detailed descriptions of people’s experiences, feelings and perceptions can be used in designing, testing or improving systems or products.

  • Generation of new ideas

Open-ended responses mean that researchers can uncover novel problems or opportunities that they wouldn’t have thought of otherwise.

Researchers must consider practical and theoretical limitations in analysing and interpreting their data. Qualitative research suffers from:

  • Unreliability

The real-world setting often makes qualitative research unreliable because of uncontrolled factors that affect the data.

  • Subjectivity

Due to the researcher’s primary role in analysing and interpreting data, qualitative research cannot be replicated . The researcher decides what is important and what is irrelevant in data analysis, so interpretations of the same data can vary greatly.

  • Limited generalisability

Small samples are often used to gather detailed data about specific contexts. Despite rigorous analysis procedures, it is difficult to draw generalisable conclusions because the data may be biased and unrepresentative of the wider population .

  • Labour-intensive

Although software can be used to manage and record large amounts of text, data analysis often has to be checked or performed manually.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organisation to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, January 30). What Is Qualitative Research? | Methods & Examples. Scribbr. Retrieved 14 May 2024, from https://www.scribbr.co.uk/research-methods/introduction-to-qualitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

University of Leeds logo

  • Study and research support
  • Academic skills

Dissertation examples

Listed below are some of the best examples of research projects and dissertations from undergraduate and taught postgraduate students at the University of Leeds We have not been able to gather examples from all schools. The module requirements for research projects may have changed since these examples were written. Refer to your module guidelines to make sure that you address all of the current assessment criteria. Some of the examples below are only available to access on campus.

  • Undergraduate examples
  • Taught Masters examples

COMMENTS

  1. PDF Student Engagement: a Qualitative Study of Extracurricular Activities

    completion of this dissertation. I am truly privileged to have had the support and valuable guidance of Dr. Jim Ryan, my thesis supervisor during this research. The effort, encouragement, wisdom, and valuable recommendations and guidance he imparted greatly supported me throughout this research completion. Many thanks, Jim.

  2. A Qualitative Case Study of Students' Perceptions of Their Experiences

    qualitative research professor. I was positive that I would design a quantitative research study but the qualitative courses in the program highlighted the merits of qualitative research. Dr. Cozza and Ms. Rosaria Cimino, thanks for the advisement support. To all the Ed.D. candidates that I encountered on my academic journey, especially my

  3. PDF A Sample Qualitative Dissertation Proposal

    Microsoft Word - Proposal-QUAL-Morales.doc. A Sample Qualitative Dissertation Proposal. Prepared by. Alejandro Morales. NOTE: This proposal is included in the ancillary materials of Research Design with permission of the author. LANGUAGE BROKERING IN MEXICAN IMMIGRANT FAMILIES LIVING IN.

  4. A Qualitative Study of the Impact of Experiences of Students With

    coach was the focus of this study. The purpose of this qualitative research was to gauge the extent of pressures, the social and emotional impact, and the advantages and/or disadvantages individuals felt when they were a student having a parent in a position of authority at their school. The findings from the research study substantiated the

  5. PDF Students' Perceptions of Bullying After the Fact: A Qualitative Study

    research project took shape long before the events of April 16th unfolded. The data were collected and analyzed and the writing of the results had already commenced when our community fell victim to this violence. While this research project was not originally constructed in reaction to the events that unfolded that windy day, the words and ...

  6. PDF Writing up your PhD (Qualitative Research)

    What makes qualitative research 'qualitative'? Before we look at alternative thesis structures, let's take a step backand consider the fundamental differences between qualitative and quantitative research: Qualitative researching is exciting and important. It is a highly rewarding activity because it engages us

  7. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...

  8. A Qualitative Phenomenological Study of Employee Perceptions of the

    This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks.

  9. Qualitative research

    You are likely to need a variety of tools in qualitative research - different theories, models or concepts - to help you tackle different parts of your research question. ... Example 1: This dissertation will adopt a case-study approach, exploring three distinct projects to improve sustainability in social housing at a local, national and ...

  10. Tips for a qualitative dissertation

    Undertaking an MSc dissertation in Evidence-Based Health Care (EBHC) may be your first hands-on experience of doing qualitative research. I chatted to Dr. Veronika Williams, an experienced qualitative researcher, and tutor on the EBHC programme, to find out her top tips for producing a high-quality qualitative EBHC thesis.

  11. PDF CHAPTER III: METHOD

    Dissertation Chapter 3 Sample. be be 1. Describe. quantitative, CHAPTER III: METHOD introduce the qualitative, the method of the chapter and mixed-methods). used (i.e. The purpose of this chapter is to introduce the research methodology for this. methodology the specific connects to it question(s). research.

  12. Dissertation Results & Findings Chapter (Qualitative)

    The results chapter in a dissertation or thesis (or any formal academic research piece) is where you objectively and neutrally present the findings of your qualitative analysis (or analyses if you used multiple qualitative analysis methods ). This chapter can sometimes be combined with the discussion chapter (where you interpret the data and ...

  13. Presenting Findings (Qualitative)

    Qualitative research presents "best examples" of raw data to demonstrate an analytic point, not simply to display data. Numbers (descriptive statistics) help your reader understand how prevalent or typical a finding is. Numbers are helpful and should not be avoided simply because this is a qualitative dissertation.

  14. Planning Qualitative Research: Design and Decision Making for New

    While many books and articles guide various qualitative research methods and analyses, there is currently no concise resource that explains and differentiates among the most common qualitative approaches. We believe novice qualitative researchers, students planning the design of a qualitative study or taking an introductory qualitative research course, and faculty teaching such courses can ...

  15. Prize-Winning Thesis and Dissertation Examples

    Prize-Winning Thesis and Dissertation Examples. Published on September 9, 2022 by Tegan George.Revised on July 18, 2023. It can be difficult to know where to start when writing your thesis or dissertation.One way to come up with some ideas or maybe even combat writer's block is to check out previous work done by other students on a similar thesis or dissertation topic to yours.

  16. How to use and assess qualitative research methods

    Abstract. This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions ...

  17. PDF Students' Perceptions towards the Quality of Online Education: A

    The findings of this research revealed that flexibility, cost-effectiveness, electronic research availability, ease of connection to the Internet, and well-designed class interface were students' positive experiences. The students' negative experiences were caused by delayed feedback from instructors, unavailable technical support from ...

  18. PDF Sample of the Qualitative Research Paper

    QUALITATIVE RESEARCH PAPER 1 Sample of the Qualitative Research Paper In the following pages you will find a sample of the full BGS research qualitative paper with each section or chapter as it might look in a completed research paper beginning with the title page and working through each chapter and section of the research paper.

  19. What Is Qualitative Research?

    Revised on 30 January 2023. Qualitative research involves collecting and analysing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which ...

  20. eRepository @ Seton Hall

    eRepository @ Seton Hall

  21. PDF Chapter Three 3 Qualitative Research Design and Methods 3.1

    quantitative research design (Creswell, 1994, pp. 1-2, own emphasis). This study uses the "extended-case studies" approach (Babbie, 2007, p. 298) that seeks to investigate, analyse, and interpret contingency relationships. 1. Qualitative research presents a complex set of issues (and key variables or themes, or both) and seeks to draw ...

  22. PDF CHAPTER FOUR Qualitative Research

    Research. methods that delve deeply into experiences, social processes, and subcultures are referred to as qualitative research. As a group, qualitative research methods: Recognize that every individual is situated in an unfolding life context, that is, a set of circumstances, values, and influences. Respect the meanings each individual assigns ...

  23. Dissertation examples

    Dissertation examples. Listed below are some of the best examples of research projects and dissertations from undergraduate and taught postgraduate students at the University of Leeds We have not been able to gather examples from all schools. The module requirements for research projects may have changed since these examples were written.