Logo for Open Educational Resources

Chapter 21. Conclusion: The Value of Qualitative Research

Qualitative research is engaging research, in the best sense of the word.

A few of the meanings of engage = to attract or hold by influence or power; to hold the attention of; to induce to participate; to enter into contest with; to bring together or interlock; to deal with at length; to pledge oneself; to begin and carry on an enterprise; to take part or participate; to come together; engaged = to be actively involved in or committed; to greatly interest; to be embedded with. ( Merriam-Webster Unabridged Dictionary )

There really is no “cookbook” for conducting qualitative research. Each study is unique because the social world is rich and full of wonders, and those of us who are curious about it have our own position in that world and our own understandings and experiences we bring with us when we seek to explore it. And yet even though our reports may be subjective, we can do what we can to make them honest and intelligible to everyone else. Learning how to do that is learning how to be a qualitative researcher rather than simply an amateur observer. Helping you understand that and getting you ready for doing so have been the goal of this book.

what is conclusion in qualitative research

According to Lareau ( 2021:36 ), excellent qualitative work must include all the following elements: a clear contribution to new knowledge, a succinct assessment of previous literature that shows the holes in the literature, a research question that can be answered with the data in hand, a breadth and depth in the data collection, a clear exposition of the results, a deep analysis that links the evidence to the interpretation, an acknowledgment of disconfirming evidence, a discussion that uses the case as a springboard to reflect on more general concerns, and a full discussion of implications for ideas and practices. The emphasis on rigor, the clear contribution to new knowledge, and the reflection on more general concerns place qualitative research within the “scientific” camp vis-à-vis the “humanistic inquiry” camp of pure description or ideographic approaches. The attention to previous literature and filling the holes in what we know about a phenomenon or case or situation set qualitative research apart from otherwise excellent journalism, which makes no pretensions of writing to or for a larger body of knowledge.

In the magnificently engaging untextbook Rocking Qualitative Social Science , Ashley Rubin ( 2021 ) notes, “Rigorous research does not have to be rigid” ( 3 ). I agree with her claim that there are many ways to get to the top of the mountain, and you can have fun doing so. An ardent rock climber, Rubin calls her approach the Dirtbagger approach, a way of climbing the mountain that is creative, flexible, and definitely outside proscribed methods. Here are eleven lessons offered by Rubin in paraphrase form with commentary and direct quotes noted:

  • There is no right way to do qualitative social science, “and people should choose the approach that works for them, for the particular project at hand, given whatever constraints and opportunities are happening in their life at the time. ( 252 )”
  • Disagreements about what is proper qualitative research are distracting and misleading.
  • Even though research questions are very important, they can and most likely will change during data collection or even data analysis—don’t worry about this.
  • Your findings will have a bigger impact if you’ve connected them to previous literature; this shows that you are part of the larger conversation. This “anchor” can be a policy issue or a theoretical debate in the literature, but it need not be either. Sometimes what we do is really novel (but rarely—so always poke around and check before proceeding as if you are inventing the wheel).
  • Although there are some rules you really must follow when designing your study (e.g., how to obtain informed consent, defining a sample), unexpected things often happen in the course of data collection that make a mockery of your original plans. Be flexible.
  • Sometimes you have chosen a topic for some reason you can’t yet articulate to yourself—the subject or site just calls to you in some way. That’s fine. But you will still need to justify your choice in some way (hint: see number 4 above).
  • Pay close attention to your sample: “Think about what you are leaving out, what your data allow you to observe, and what you can do to fill in some of those blanks” (252).  And when you can’t fill them in, be honest about this when writing about the limitations of your study.
  • Even if you are doing interviews, archival research, focus groups, or any other method of data collection that does not actually require “going into the field,” you can still approach your work as fieldwork. This means taking fieldnotes or memos about what you are observing and how you are reacting and processing those observations or interviews or interactions or documents. Remember that you yourself are the instrument of data collection, so keep a reflective eye on yourself throughout.
  • Memo, memo, memo. There is no magic about how data become findings. It takes a lot of work, a lot of reflection, a lot of writing. Analytic memos are the helpful bridge between all that raw data and the presented findings.
  • Rubin strongly rejects the idea that qualitative research cannot make causal claims. I would agree, but only to a point. We don’t make the kinds of predictive causal claims you see in quantitative research, and it can confuse you and lead you down some unpromising paths if you think you can. That said, qualitative research can help demonstrate the causal mechanisms by which something happens. Qualitative research is also helpful in exploring alternative explanations and counterfactuals. If you want to know more about qualitative research and causality, I encourage you to read chapter 10 of Rubin’s text.
  • Some people are still skeptical about the value of qualitative research because they don’t understand the rigor required of it and confuse it with journalism or even fiction writing. You are just going to have to deal with this—maybe even people sitting on your committee are going to question your research. So be prepared to defend qualitative research by knowing the common misconceptions and criticisms and how to respond to them. We’ve talked a bit about these in chapter 20, and I also encourage you to read chapter 10 of Rubin’s text for more.

Null

Hopefully, by the time you have reached the end of this book, you will have done a bit of your own qualitative research—maybe you’ve conducted an interview or practiced taking fieldnotes. You may have read some examples of excellent qualitative research and have (hopefully!) come to appreciate the value of this approach. This is a good time, then, to take a step back and think about the ways that qualitative research is valuable, distinct and different from both quantitative methods and humanistic (nonscientific) inquiry.

Researcher Note

Why do you employ qualitative research methods in your area of study?

Across all Western countries, we can observe a strong statistical relationship between young people’s educational attainment and their parent’s level of education. If you have at least one parent who went to university, your own chances of going to and graduating from university are much higher compared to not having university-educated parents. Why this happens is much less clear… This is where qualitative research becomes important: to help us get a clearer understanding of the dynamics that lead to this observed statistical relationship.

In my own research, I go a step further and look at young men and women who have crossed this barrier: they have become the first in their family to go to university. I am interested in finding out why and how first-in-family university students made it to university and how being at university is experienced. In-depth interviews allow me to learn about hopes, aspirations, fears, struggles, resilience and success. Interviews give participants an opportunity to tell their stories in their own words while also validating their experiences.

I often ask the young people I interview what being in my studies means to them. As one of my participants told me, it is good to know that “people like me are worth studying.” I cannot think of a better way to explain why qualitative research is important.

-Wolfgang Lehman, author of Education and Society: Canadian Perspectives

For me personally, the real value of the qualitative approach is that it helps me address the concerns I have about the social world—how people make sense of their lives, how they create strategies to deal with unfair circumstances or systems of oppression, and why they are motivated to act in some situations but not others. Surveys and other forms of large impersonal data collection simply do not allow me to get at these concerns. I appreciate other forms of research for other kinds of questions. This ecumenical approach has served me well in my own career as a sociologist—I’ve used surveys of students to help me describe classed pathways through college and into the workforce, supplemented by interviews and focus groups that help me explain and understand the patterns uncovered by quantitative methods ( Hurst 2019 ). My goal for this book has not been to convince you to become a qualitative researcher exclusively but rather to understand and appreciate its value under the right circumstances (e.g., with the right questions and concerns).

In the same way that we would not use a screwdriver to hammer a nail into the wall, we don’t want to misuse the tools we have at hand. Nor should we critique the screwdriver for its failure to do the hammer’s job. Qualitative research is not about generating predictions or demonstrating causality. We can never statistically generalize our findings from a small sample of people in a particular context to the world at large. But that doesn’t mean we can’t generate better understandings of how the world works, despite “small” samples. Excellent qualitative research does a great job describing (whether through “thick description” or illustrative quotes) a phenomenon, case, or setting and generates deeper insight into the social world through the development of new concepts or identification of patterns and relationships that were previously unknown to us. The two components—accurate description and theoretical insight—are generated together through the iterative process of data analysis, which itself is based on a solid foundation of data collection. And along the way, we can have some fun and meet some interesting people!

what is conclusion in qualitative research

Supplement: Twenty Great (engaging, insightful) Books Based on Qualitative Research

Armstrong, Elizabeth A. and Laura T. Hamilton. 2015. Paying for the Party: How College Maintains Inequality . Cambridge: Harvard University Press.

Bourgois, Phillipe and Jeffrey Schonberg. 2009. Righteous Dopefiend . Berkeley, CA: University of California Press.

DiTomaso, Nancy. 2013. The American Non-dilemma: Racial Inequality without Racism . Thousand Oaks, CA; SAGE.

Ehrenreich, Barbara. 2010. Nickel and Dimed: On (Not) Getting By in America . New York: Metropolitan Books.

Fine, Gary Alan. 2018. Talking Art: The Culture of Practice and the Practice of Culture in MFA Education . Chicago: University of Chicago Press.

Ghodsee, Kristen Rogheh. 2011. Lost in Transition: Ethnographies of Everyday Life after Communism . Durham, NC: Duke University Press.

Gowan, Teresa. 2010. Hobos, Hustlers, and Backsliders: Homeless in San Francisco . Minneapolis: University of Minnesota Press.

Graeber, David. 2013. The Democracy Project: A History, a Crisis, a Movement . New York: Spiegel & Grau.

Grazian, David. 2015. American Zoo: A Sociological Safari . Princeton, NJ: Princeton University Press.

Hartigan, John. 1999. Racial Situations: Class Predicaments of Whiteness in Detroit . Princeton, N.J.: Princeton University Press.

Ho, Karen Zouwen. 2009. Liquidated: An Ethnography of Wall Street. Durham, NC: Duke University Press.

Hochschild, Arlie Russell. 2018. Strangers in Their Own Land: Anger and Mourning on the American Right . New York: New Press.

Lamont, Michèle. 1994. Money, Morals, and Manners: The Culture of the French and the American Upper-Middle Class . Chicago: University of Chicago Press.

Lareau, Annette. 2011. Unequal Childhoods: Class, Race, and Family Life. 2nd ed with an Update a Decade Later. Berkeley, CA: University of California Press.

Leondar-Wright, Betsy. 2014. Missing Class: Strengthening Social Movement Groups by Seeing Class Cultures . Ithaca, NY: ILR Press.

Macleod, Jay. 2008. Ain’t No Makin’ It: Aspirations and Attainment in a Low-Income Neighborhood . 3rd ed. New York: Routledge.

Newman, Katherine T. 2000. No Shame in My Game: The Working Poor in the Inner City . 3rd ed. New York: Vintage Press.

Sherman, Rachel. 2006. Class Acts: Service and Inequality in Luxury Hotels . Berkeley: University of California Press.

Streib, Jessi. 2015. The Power of the Past: Understanding Cross-Class Marriages . Oxford: Oxford University Press.

Stuber, Jenny M. 2011. Inside the College Gates: How Class and Culture Matter in Higher Education . Lanham, Md.: Lexington Books.

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 9. The Conclusion
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The conclusion is intended to help the reader understand why your research should matter to them after they have finished reading the paper. A conclusion is not merely a summary of the main topics covered or a re-statement of your research problem, but a synthesis of key points and, if applicable, where you recommend new areas for future research. For most college-level research papers, one or two well-developed paragraphs is sufficient for a conclusion, although in some cases, more paragraphs may be required in summarizing key findings and their significance.

Conclusions. The Writing Center. University of North Carolina; Conclusions. The Writing Lab and The OWL. Purdue University.

Importance of a Good Conclusion

A well-written conclusion provides you with important opportunities to demonstrate to the reader your understanding of the research problem. These include:

  • Presenting the last word on the issues you raised in your paper . Just as the introduction gives a first impression to your reader, the conclusion offers a chance to leave a lasting impression. Do this, for example, by highlighting key findings in your analysis that advance new understanding about the research problem, that are unusual or unexpected, or that have important implications applied to practice.
  • Summarizing your thoughts and conveying the larger significance of your study . The conclusion is an opportunity to succinctly re-emphasize  the "So What?" question by placing the study within the context of how your research advances past research about the topic.
  • Identifying how a gap in the literature has been addressed . The conclusion can be where you describe how a previously identified gap in the literature [described in your literature review section] has been filled by your research.
  • Demonstrating the importance of your ideas . Don't be shy. The conclusion offers you the opportunity to elaborate on the impact and significance of your findings. This is particularly important if your study approached examining the research problem from an unusual or innovative perspective.
  • Introducing possible new or expanded ways of thinking about the research problem . This does not refer to introducing new information [which should be avoided], but to offer new insight and creative approaches for framing or contextualizing the research problem based on the results of your study.

Bunton, David. “The Structure of PhD Conclusion Chapters.” Journal of English for Academic Purposes 4 (July 2005): 207–224; Conclusions. The Writing Center. University of North Carolina; Kretchmer, Paul. Twelve Steps to Writing an Effective Conclusion. San Francisco Edit, 2003-2008; Conclusions. The Writing Lab and The OWL. Purdue University; Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8.

Structure and Writing Style

I.  General Rules

The function of your paper's conclusion is to restate the main argument . It reminds the reader of the strengths of your main argument(s) and reiterates the most important evidence supporting those argument(s). Do this by stating clearly the context, background, and necessity of pursuing the research problem you investigated in relation to an issue, controversy, or a gap found in the literature. Make sure, however, that your conclusion is not simply a repetitive summary of the findings. This reduces the impact of the argument(s) you have developed in your essay.

When writing the conclusion to your paper, follow these general rules:

  • Present your conclusions in clear, simple language. Re-state the purpose of your study, then describe how your findings differ or support those of other studies and why [i.e., what were the unique or new contributions your study made to the overall research about your topic?].
  • Do not simply reiterate your findings or the discussion of your results. Provide a synthesis of arguments presented in the paper to show how these converge to address the research problem and the overall objectives of your study.
  • Indicate opportunities for future research if you haven't already done so in the discussion section of your paper. Highlighting the need for further research provides the reader with evidence that you have an in-depth awareness of the research problem and that further investigations should take place.

Consider the following points to help ensure your conclusion is presented well:

  • If the argument or purpose of your paper is complex, you may need to summarize the argument for your reader.
  • If, prior to your conclusion, you have not yet explained the significance of your findings or if you are proceeding inductively, use the end of your paper to describe your main points and explain their significance.
  • Move from a detailed to a general level of consideration that returns the topic to the context provided by the introduction or within a new context that emerges from the data. 

The conclusion also provides a place for you to persuasively and succinctly restate the research problem, given that the reader has now been presented with all the information about the topic . Depending on the discipline you are writing in, the concluding paragraph may contain your reflections on the evidence presented. However, the nature of being introspective about the research you have conducted will depend on the topic and whether your professor wants you to express your observations in this way.

NOTE : If asked to think introspectively about the topics, do not delve into idle speculation. Being introspective means looking within yourself as an author to try and understand an issue more deeply, not to guess at possible outcomes or make up scenarios not supported by the evidence.

II.  Developing a Compelling Conclusion

Although an effective conclusion needs to be clear and succinct, it does not need to be written passively or lack a compelling narrative. Strategies to help you move beyond merely summarizing the key points of your research paper may include any of the following strategies:

  • If your essay deals with a critical, contemporary problem, warn readers of the possible consequences of not attending to the problem proactively.
  • Recommend a specific course or courses of action that, if adopted, could address a specific problem in practice or in the development of new knowledge.
  • Cite a relevant quotation or expert opinion already noted in your paper in order to lend authority and support to the conclusion(s) you have reached [a good place to look is research from your literature review].
  • Explain the consequences of your research in a way that elicits action or demonstrates urgency in seeking change.
  • Restate a key statistic, fact, or visual image to emphasize the most important finding of your paper.
  • If your discipline encourages personal reflection, illustrate your concluding point by drawing from your own life experiences.
  • Return to an anecdote, an example, or a quotation that you presented in your introduction, but add further insight derived from the findings of your study; use your interpretation of results to recast it in new or important ways.
  • Provide a "take-home" message in the form of a succinct, declarative statement that you want the reader to remember about your study.

III. Problems to Avoid

Failure to be concise Your conclusion section should be concise and to the point. Conclusions that are too lengthy often have unnecessary information in them. The conclusion is not the place for details about your methodology or results. Although you should give a summary of what was learned from your research, this summary should be relatively brief, since the emphasis in the conclusion is on the implications, evaluations, insights, and other forms of analysis that you make. Strategies for writing concisely can be found here .

Failure to comment on larger, more significant issues In the introduction, your task was to move from the general [the field of study] to the specific [the research problem]. However, in the conclusion, your task is to move from a specific discussion [your research problem] back to a general discussion [i.e., how your research contributes new understanding or fills an important gap in the literature]. In short, the conclusion is where you should place your research within a larger context [visualize your paper as an hourglass--start with a broad introduction and review of the literature, move to the specific analysis and discussion, conclude with a broad summary of the study's implications and significance].

Failure to reveal problems and negative results Negative aspects of the research process should never be ignored. These are problems, deficiencies, or challenges encountered during your study should be summarized as a way of qualifying your overall conclusions. If you encountered negative or unintended results [i.e., findings that are validated outside the research context in which they were generated], you must report them in the results section and discuss their implications in the discussion section of your paper. In the conclusion, use your summary of the negative results as an opportunity to explain their possible significance and/or how they may form the basis for future research.

Failure to provide a clear summary of what was learned In order to be able to discuss how your research fits within your field of study [and possibly the world at large], you need to summarize briefly and succinctly how it contributes to new knowledge or a new understanding about the research problem. This element of your conclusion may be only a few sentences long.

Failure to match the objectives of your research Often research objectives in the social sciences change while the research is being carried out. This is not a problem unless you forget to go back and refine the original objectives in your introduction. As these changes emerge they must be documented so that they accurately reflect what you were trying to accomplish in your research [not what you thought you might accomplish when you began].

Resist the urge to apologize If you've immersed yourself in studying the research problem, you presumably should know a good deal about it [perhaps even more than your professor!]. Nevertheless, by the time you have finished writing, you may be having some doubts about what you have produced. Repress those doubts! Don't undermine your authority by saying something like, "This is just one approach to examining this problem; there may be other, much better approaches that...." The overall tone of your conclusion should convey confidence to the reader.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8; Concluding Paragraphs. College Writing Center at Meramec. St. Louis Community College; Conclusions. The Writing Center. University of North Carolina; Conclusions. The Writing Lab and The OWL. Purdue University; Freedman, Leora  and Jerry Plotnick. Introductions and Conclusions. The Lab Report. University College Writing Centre. University of Toronto; Leibensperger, Summer. Draft Your Conclusion. Academic Center, the University of Houston-Victoria, 2003; Make Your Last Words Count. The Writer’s Handbook. Writing Center. University of Wisconsin Madison; Miquel, Fuster-Marquez and Carmen Gregori-Signes. “Chapter Six: ‘Last but Not Least:’ Writing the Conclusion of Your Paper.” In Writing an Applied Linguistics Thesis or Dissertation: A Guide to Presenting Empirical Research . John Bitchener, editor. (Basingstoke,UK: Palgrave Macmillan, 2010), pp. 93-105; Tips for Writing a Good Conclusion. Writing@CSU. Colorado State University; Kretchmer, Paul. Twelve Steps to Writing an Effective Conclusion. San Francisco Edit, 2003-2008; Writing Conclusions. Writing Tutorial Services, Center for Innovative Teaching and Learning. Indiana University; Writing: Considering Structure and Organization. Institute for Writing Rhetoric. Dartmouth College.

Writing Tip

Don't Belabor the Obvious!

Avoid phrases like "in conclusion...," "in summary...," or "in closing...." These phrases can be useful, even welcome, in oral presentations. But readers can see by the tell-tale section heading and number of pages remaining to read, when an essay is about to end. You'll irritate your readers if you belabor the obvious.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8.

Another Writing Tip

New Insight, Not New Information!

Don't surprise the reader with new information in your conclusion that was never referenced anywhere else in the paper and, as such, the conclusion rarely has citations to sources. If you have new information to present, add it to the discussion or other appropriate section of the paper. Note that, although no actual new information is introduced, the conclusion, along with the discussion section, is where you offer your most "original" contributions in the paper; the conclusion is where you describe the value of your research, demonstrate that you understand the material that you’ve presented, and locate your findings within the larger context of scholarship on the topic, including describing how your research contributes new insights or valuable insight to that scholarship.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8; Conclusions. The Writing Center. University of North Carolina.

  • << Previous: Limitations of the Study
  • Next: Appendices >>
  • Last Updated: Mar 26, 2024 10:40 AM
  • URL: https://libguides.usc.edu/writingguide

How to Write a Conclusion for Research Papers (with Examples)

How to Write a Conclusion for Research Papers (with Examples)

The conclusion of a research paper is a crucial section that plays a significant role in the overall impact and effectiveness of your research paper. However, this is also the section that typically receives less attention compared to the introduction and the body of the paper. The conclusion serves to provide a concise summary of the key findings, their significance, their implications, and a sense of closure to the study. Discussing how can the findings be applied in real-world scenarios or inform policy, practice, or decision-making is especially valuable to practitioners and policymakers. The research paper conclusion also provides researchers with clear insights and valuable information for their own work, which they can then build on and contribute to the advancement of knowledge in the field.

The research paper conclusion should explain the significance of your findings within the broader context of your field. It restates how your results contribute to the existing body of knowledge and whether they confirm or challenge existing theories or hypotheses. Also, by identifying unanswered questions or areas requiring further investigation, your awareness of the broader research landscape can be demonstrated.

Remember to tailor the research paper conclusion to the specific needs and interests of your intended audience, which may include researchers, practitioners, policymakers, or a combination of these.

Table of Contents

What is a conclusion in a research paper, summarizing conclusion, editorial conclusion, externalizing conclusion, importance of a good research paper conclusion, how to write a conclusion for your research paper, research paper conclusion examples.

  • How to write a research paper conclusion with Paperpal? 

Frequently Asked Questions

A conclusion in a research paper is the final section where you summarize and wrap up your research, presenting the key findings and insights derived from your study. The research paper conclusion is not the place to introduce new information or data that was not discussed in the main body of the paper. When working on how to conclude a research paper, remember to stick to summarizing and interpreting existing content. The research paper conclusion serves the following purposes: 1

  • Warn readers of the possible consequences of not attending to the problem.
  • Recommend specific course(s) of action.
  • Restate key ideas to drive home the ultimate point of your research paper.
  • Provide a “take-home” message that you want the readers to remember about your study.

what is conclusion in qualitative research

Types of conclusions for research papers

In research papers, the conclusion provides closure to the reader. The type of research paper conclusion you choose depends on the nature of your study, your goals, and your target audience. I provide you with three common types of conclusions:

A summarizing conclusion is the most common type of conclusion in research papers. It involves summarizing the main points, reiterating the research question, and restating the significance of the findings. This common type of research paper conclusion is used across different disciplines.

An editorial conclusion is less common but can be used in research papers that are focused on proposing or advocating for a particular viewpoint or policy. It involves presenting a strong editorial or opinion based on the research findings and offering recommendations or calls to action.

An externalizing conclusion is a type of conclusion that extends the research beyond the scope of the paper by suggesting potential future research directions or discussing the broader implications of the findings. This type of conclusion is often used in more theoretical or exploratory research papers.

Align your conclusion’s tone with the rest of your research paper. Start Writing with Paperpal Now!  

The conclusion in a research paper serves several important purposes:

  • Offers Implications and Recommendations : Your research paper conclusion is an excellent place to discuss the broader implications of your research and suggest potential areas for further study. It’s also an opportunity to offer practical recommendations based on your findings.
  • Provides Closure : A good research paper conclusion provides a sense of closure to your paper. It should leave the reader with a feeling that they have reached the end of a well-structured and thought-provoking research project.
  • Leaves a Lasting Impression : Writing a well-crafted research paper conclusion leaves a lasting impression on your readers. It’s your final opportunity to leave them with a new idea, a call to action, or a memorable quote.

what is conclusion in qualitative research

Writing a strong conclusion for your research paper is essential to leave a lasting impression on your readers. Here’s a step-by-step process to help you create and know what to put in the conclusion of a research paper: 2

  • Research Statement : Begin your research paper conclusion by restating your research statement. This reminds the reader of the main point you’ve been trying to prove throughout your paper. Keep it concise and clear.
  • Key Points : Summarize the main arguments and key points you’ve made in your paper. Avoid introducing new information in the research paper conclusion. Instead, provide a concise overview of what you’ve discussed in the body of your paper.
  • Address the Research Questions : If your research paper is based on specific research questions or hypotheses, briefly address whether you’ve answered them or achieved your research goals. Discuss the significance of your findings in this context.
  • Significance : Highlight the importance of your research and its relevance in the broader context. Explain why your findings matter and how they contribute to the existing knowledge in your field.
  • Implications : Explore the practical or theoretical implications of your research. How might your findings impact future research, policy, or real-world applications? Consider the “so what?” question.
  • Future Research : Offer suggestions for future research in your area. What questions or aspects remain unanswered or warrant further investigation? This shows that your work opens the door for future exploration.
  • Closing Thought : Conclude your research paper conclusion with a thought-provoking or memorable statement. This can leave a lasting impression on your readers and wrap up your paper effectively. Avoid introducing new information or arguments here.
  • Proofread and Revise : Carefully proofread your conclusion for grammar, spelling, and clarity. Ensure that your ideas flow smoothly and that your conclusion is coherent and well-structured.

Write your research paper conclusion 2x faster with Paperpal. Try it now!

Remember that a well-crafted research paper conclusion is a reflection of the strength of your research and your ability to communicate its significance effectively. It should leave a lasting impression on your readers and tie together all the threads of your paper. Now you know how to start the conclusion of a research paper and what elements to include to make it impactful, let’s look at a research paper conclusion sample.

what is conclusion in qualitative research

How to write a research paper conclusion with Paperpal?

A research paper conclusion is not just a summary of your study, but a synthesis of the key findings that ties the research together and places it in a broader context. A research paper conclusion should be concise, typically around one paragraph in length. However, some complex topics may require a longer conclusion to ensure the reader is left with a clear understanding of the study’s significance. Paperpal, an AI writing assistant trusted by over 800,000 academics globally, can help you write a well-structured conclusion for your research paper. 

  • Sign Up or Log In: Create a new Paperpal account or login with your details.  
  • Navigate to Features : Once logged in, head over to the features’ side navigation pane. Click on Templates and you’ll find a suite of generative AI features to help you write better, faster.  
  • Generate an outline: Under Templates, select ‘Outlines’. Choose ‘Research article’ as your document type.  
  • Select your section: Since you’re focusing on the conclusion, select this section when prompted.  
  • Choose your field of study: Identifying your field of study allows Paperpal to provide more targeted suggestions, ensuring the relevance of your conclusion to your specific area of research. 
  • Provide a brief description of your study: Enter details about your research topic and findings. This information helps Paperpal generate a tailored outline that aligns with your paper’s content. 
  • Generate the conclusion outline: After entering all necessary details, click on ‘generate’. Paperpal will then create a structured outline for your conclusion, to help you start writing and build upon the outline.  
  • Write your conclusion: Use the generated outline to build your conclusion. The outline serves as a guide, ensuring you cover all critical aspects of a strong conclusion, from summarizing key findings to highlighting the research’s implications. 
  • Refine and enhance: Paperpal’s ‘Make Academic’ feature can be particularly useful in the final stages. Select any paragraph of your conclusion and use this feature to elevate the academic tone, ensuring your writing is aligned to the academic journal standards. 

By following these steps, Paperpal not only simplifies the process of writing a research paper conclusion but also ensures it is impactful, concise, and aligned with academic standards. Sign up with Paperpal today and write your research paper conclusion 2x faster .  

The research paper conclusion is a crucial part of your paper as it provides the final opportunity to leave a strong impression on your readers. In the research paper conclusion, summarize the main points of your research paper by restating your research statement, highlighting the most important findings, addressing the research questions or objectives, explaining the broader context of the study, discussing the significance of your findings, providing recommendations if applicable, and emphasizing the takeaway message. The main purpose of the conclusion is to remind the reader of the main point or argument of your paper and to provide a clear and concise summary of the key findings and their implications. All these elements should feature on your list of what to put in the conclusion of a research paper to create a strong final statement for your work.

A strong conclusion is a critical component of a research paper, as it provides an opportunity to wrap up your arguments, reiterate your main points, and leave a lasting impression on your readers. Here are the key elements of a strong research paper conclusion: 1. Conciseness : A research paper conclusion should be concise and to the point. It should not introduce new information or ideas that were not discussed in the body of the paper. 2. Summarization : The research paper conclusion should be comprehensive enough to give the reader a clear understanding of the research’s main contributions. 3 . Relevance : Ensure that the information included in the research paper conclusion is directly relevant to the research paper’s main topic and objectives; avoid unnecessary details. 4 . Connection to the Introduction : A well-structured research paper conclusion often revisits the key points made in the introduction and shows how the research has addressed the initial questions or objectives. 5. Emphasis : Highlight the significance and implications of your research. Why is your study important? What are the broader implications or applications of your findings? 6 . Call to Action : Include a call to action or a recommendation for future research or action based on your findings.

The length of a research paper conclusion can vary depending on several factors, including the overall length of the paper, the complexity of the research, and the specific journal requirements. While there is no strict rule for the length of a conclusion, but it’s generally advisable to keep it relatively short. A typical research paper conclusion might be around 5-10% of the paper’s total length. For example, if your paper is 10 pages long, the conclusion might be roughly half a page to one page in length.

In general, you do not need to include citations in the research paper conclusion. Citations are typically reserved for the body of the paper to support your arguments and provide evidence for your claims. However, there may be some exceptions to this rule: 1. If you are drawing a direct quote or paraphrasing a specific source in your research paper conclusion, you should include a citation to give proper credit to the original author. 2. If your conclusion refers to or discusses specific research, data, or sources that are crucial to the overall argument, citations can be included to reinforce your conclusion’s validity.

The conclusion of a research paper serves several important purposes: 1. Summarize the Key Points 2. Reinforce the Main Argument 3. Provide Closure 4. Offer Insights or Implications 5. Engage the Reader. 6. Reflect on Limitations

Remember that the primary purpose of the research paper conclusion is to leave a lasting impression on the reader, reinforcing the key points and providing closure to your research. It’s often the last part of the paper that the reader will see, so it should be strong and well-crafted.

  • Makar, G., Foltz, C., Lendner, M., & Vaccaro, A. R. (2018). How to write effective discussion and conclusion sections. Clinical spine surgery, 31(8), 345-346.
  • Bunton, D. (2005). The structure of PhD conclusion chapters.  Journal of English for academic purposes ,  4 (3), 207-224.

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects

7 Ways to Improve Your Academic Writing Process

  • Paraphrasing in Academic Writing: Answering Top Author Queries

Preflight For Editorial Desk: The Perfect Hybrid (AI + Human) Assistance Against Compromised Manuscripts

You may also like, what are journal guidelines on using generative ai..., quillbot review: features, pricing, and free alternatives, what is an academic paper types and elements , should you use ai tools like chatgpt for..., publish research papers: 9 steps for successful publications , what are the different types of research papers, how to make translating academic papers less challenging, self-plagiarism in research: what it is and how..., 6 tips for post-doc researchers to take their..., presenting research data effectively through tables and figures.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Dissertation

How to Write a Thesis or Dissertation Conclusion

Published on September 6, 2022 by Tegan George and Shona McCombes. Revised on November 20, 2023.

The conclusion is the very last part of your thesis or dissertation . It should be concise and engaging, leaving your reader with a clear understanding of your main findings, as well as the answer to your research question .

In it, you should:

  • Clearly state the answer to your main research question
  • Summarize and reflect on your research process
  • Make recommendations for future work on your thesis or dissertation topic
  • Show what new knowledge you have contributed to your field
  • Wrap up your thesis or dissertation

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Discussion vs. conclusion, how long should your conclusion be, step 1: answer your research question, step 2: summarize and reflect on your research, step 3: make future recommendations, step 4: emphasize your contributions to your field, step 5: wrap up your thesis or dissertation, full conclusion example, conclusion checklist, other interesting articles, frequently asked questions about conclusion sections.

While your conclusion contains similar elements to your discussion section , they are not the same thing.

Your conclusion should be shorter and more general than your discussion. Instead of repeating literature from your literature review , discussing specific research results , or interpreting your data in detail, concentrate on making broad statements that sum up the most important insights of your research.

As a rule of thumb, your conclusion should not introduce new data, interpretations, or arguments.

Prevent plagiarism. Run a free check.

Depending on whether you are writing a thesis or dissertation, your length will vary. Generally, a conclusion should make up around 5–7% of your overall word count.

An empirical scientific study will often have a short conclusion, concisely stating the main findings and recommendations for future research. A humanities dissertation topic or systematic review , on the other hand, might require more space to conclude its analysis, tying all the previous sections together in an overall argument.

Your conclusion should begin with the main question that your thesis or dissertation aimed to address. This is your final chance to show that you’ve done what you set out to do, so make sure to formulate a clear, concise answer.

  • Don’t repeat a list of all the results that you already discussed
  • Do synthesize them into a final takeaway that the reader will remember.

An empirical thesis or dissertation conclusion may begin like this:

A case study –based thesis or dissertation conclusion may begin like this:

In the second example, the research aim is not directly restated, but rather added implicitly to the statement. To avoid repeating yourself, it is helpful to reformulate your aims and questions into an overall statement of what you did and how you did it.

Your conclusion is an opportunity to remind your reader why you took the approach you did, what you expected to find, and how well the results matched your expectations.

To avoid repetition , consider writing more reflectively here, rather than just writing a summary of each preceding section. Consider mentioning the effectiveness of your methodology , or perhaps any new questions or unexpected insights that arose in the process.

You can also mention any limitations of your research, but only if you haven’t already included these in the discussion. Don’t dwell on them at length, though—focus on the positives of your work.

  • While x limits the generalizability of the results, this approach provides new insight into y .
  • This research clearly illustrates x , but it also raises the question of y .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

You may already have made a few recommendations for future research in your discussion section, but the conclusion is a good place to elaborate and look ahead, considering the implications of your findings in both theoretical and practical terms.

  • Based on these conclusions, practitioners should consider …
  • To better understand the implications of these results, future studies could address …
  • Further research is needed to determine the causes of/effects of/relationship between …

When making recommendations for further research, be sure not to undermine your own work. Relatedly, while future studies might confirm, build on, or enrich your conclusions, they shouldn’t be required for your argument to feel complete. Your work should stand alone on its own merits.

Just as you should avoid too much self-criticism, you should also avoid exaggerating the applicability of your research. If you’re making recommendations for policy, business, or other practical implementations, it’s generally best to frame them as “shoulds” rather than “musts.” All in all, the purpose of academic research is to inform, explain, and explore—not to demand.

Make sure your reader is left with a strong impression of what your research has contributed to the state of your field.

Some strategies to achieve this include:

  • Returning to your problem statement to explain how your research helps solve the problem
  • Referring back to the literature review and showing how you have addressed a gap in knowledge
  • Discussing how your findings confirm or challenge an existing theory or assumption

Again, avoid simply repeating what you’ve already covered in the discussion in your conclusion. Instead, pick out the most important points and sum them up succinctly, situating your project in a broader context.

The end is near! Once you’ve finished writing your conclusion, it’s time to wrap up your thesis or dissertation with a few final steps:

  • It’s a good idea to write your abstract next, while the research is still fresh in your mind.
  • Next, make sure your reference list is complete and correctly formatted. To speed up the process, you can use our free APA citation generator .
  • Once you’ve added any appendices , you can create a table of contents and title page .
  • Finally, read through the whole document again to make sure your thesis is clearly written and free from language errors. You can proofread it yourself , ask a friend, or consider Scribbr’s proofreading and editing service .

Here is an example of how you can write your conclusion section. Notice how it includes everything mentioned above:

V. Conclusion

The current research aimed to identify acoustic speech characteristics which mark the beginning of an exacerbation in COPD patients.

The central questions for this research were as follows: 1. Which acoustic measures extracted from read speech differ between COPD speakers in stable condition and healthy speakers? 2. In what ways does the speech of COPD patients during an exacerbation differ from speech of COPD patients during stable periods?

All recordings were aligned using a script. Subsequently, they were manually annotated to indicate respiratory actions such as inhaling and exhaling. The recordings of 9 stable COPD patients reading aloud were then compared with the recordings of 5 healthy control subjects reading aloud. The results showed a significant effect of condition on the number of in- and exhalations per syllable, the number of non-linguistic in- and exhalations per syllable, and the ratio of voiced and silence intervals. The number of in- and exhalations per syllable and the number of non-linguistic in- and exhalations per syllable were higher for COPD patients than for healthy controls, which confirmed both hypotheses.

However, the higher ratio of voiced and silence intervals for COPD patients compared to healthy controls was not in line with the hypotheses. This unpredicted result might have been caused by the different reading materials or recording procedures for both groups, or by a difference in reading skills. Moreover, there was a trend regarding the effect of condition on the number of syllables per breath group. The number of syllables per breath group was higher for healthy controls than for COPD patients, which was in line with the hypothesis. There was no effect of condition on pitch, intensity, center of gravity, pitch variability, speaking rate, or articulation rate.

This research has shown that the speech of COPD patients in exacerbation differs from the speech of COPD patients in stable condition. This might have potential for the detection of exacerbations. However, sustained vowels rarely occur in spontaneous speech. Therefore, the last two outcome measures might have greater potential for the detection of beginning exacerbations, but further research on the different outcome measures and their potential for the detection of exacerbations is needed due to the limitations of the current study.

Checklist: Conclusion

I have clearly and concisely answered the main research question .

I have summarized my overall argument or key takeaways.

I have mentioned any important limitations of the research.

I have given relevant recommendations .

I have clearly explained what my research has contributed to my field.

I have  not introduced any new data or arguments.

You've written a great conclusion! Use the other checklists to further improve your dissertation.

If you want to know more about AI for academic writing, AI tools, or research bias, make sure to check out some of our other articles with explanations and examples or go directly to our tools!

Research bias

  • Survivorship bias
  • Self-serving bias
  • Availability heuristic
  • Halo effect
  • Hindsight bias
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

In a thesis or dissertation, the discussion is an in-depth exploration of the results, going into detail about the meaning of your findings and citing relevant sources to put them in context.

The conclusion is more shorter and more general: it concisely answers your main research question and makes recommendations based on your overall findings.

While it may be tempting to present new arguments or evidence in your thesis or disseration conclusion , especially if you have a particularly striking argument you’d like to finish your analysis with, you shouldn’t. Theses and dissertations follow a more formal structure than this.

All your findings and arguments should be presented in the body of the text (more specifically in the discussion section and results section .) The conclusion is meant to summarize and reflect on the evidence and arguments you have already presented, not introduce new ones.

For a stronger dissertation conclusion , avoid including:

  • Important evidence or analysis that wasn’t mentioned in the discussion section and results section
  • Generic concluding phrases (e.g. “In conclusion …”)
  • Weak statements that undermine your argument (e.g., “There are good points on both sides of this issue.”)

Your conclusion should leave the reader with a strong, decisive impression of your work.

The conclusion of your thesis or dissertation shouldn’t take up more than 5–7% of your overall word count.

The conclusion of your thesis or dissertation should include the following:

  • A restatement of your research question
  • A summary of your key arguments and/or results
  • A short discussion of the implications of your research

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

George, T. & McCombes, S. (2023, November 20). How to Write a Thesis or Dissertation Conclusion. Scribbr. Retrieved March 25, 2024, from https://www.scribbr.com/dissertation/write-conclusion/

Is this article helpful?

Tegan George

Tegan George

Other students also liked, how to write a discussion section | tips & examples, how to write an abstract | steps & examples, how to write a thesis or dissertation introduction, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

What is Qualitative in Qualitative Research

  • Open access
  • Published: 27 February 2019
  • Volume 42 , pages 139–160, ( 2019 )

Cite this article

You have full access to this open access article

  • Patrik Aspers 1 , 2 &
  • Ugo Corte 3  

573k Accesses

276 Citations

24 Altmetric

Explore all metrics

What is qualitative research? If we look for a precise definition of qualitative research, and specifically for one that addresses its distinctive feature of being “qualitative,” the literature is meager. In this article we systematically search, identify and analyze a sample of 89 sources using or attempting to define the term “qualitative.” Then, drawing on ideas we find scattered across existing work, and based on Becker’s classic study of marijuana consumption, we formulate and illustrate a definition that tries to capture its core elements. We define qualitative research as an iterative process in which improved understanding to the scientific community is achieved by making new significant distinctions resulting from getting closer to the phenomenon studied. This formulation is developed as a tool to help improve research designs while stressing that a qualitative dimension is present in quantitative work as well. Additionally, it can facilitate teaching, communication between researchers, diminish the gap between qualitative and quantitative researchers, help to address critiques of qualitative methods, and be used as a standard of evaluation of qualitative research.

Similar content being viewed by others

what is conclusion in qualitative research

What is Qualitative in Research

Patrik Aspers & Ugo Corte

Unsettling Definitions of Qualitative Research

Japonica Brown-Saracino

What is “Qualitative” in Qualitative Research? Why the Answer Does not Matter but the Question is Important

Mario L. Small

Avoid common mistakes on your manuscript.

If we assume that there is something called qualitative research, what exactly is this qualitative feature? And how could we evaluate qualitative research as good or not? Is it fundamentally different from quantitative research? In practice, most active qualitative researchers working with empirical material intuitively know what is involved in doing qualitative research, yet perhaps surprisingly, a clear definition addressing its key feature is still missing.

To address the question of what is qualitative we turn to the accounts of “qualitative research” in textbooks and also in empirical work. In his classic, explorative, interview study of deviance Howard Becker ( 1963 ) asks ‘How does one become a marijuana user?’ In contrast to pre-dispositional and psychological-individualistic theories of deviant behavior, Becker’s inherently social explanation contends that becoming a user of this substance is the result of a three-phase sequential learning process. First, potential users need to learn how to smoke it properly to produce the “correct” effects. If not, they are likely to stop experimenting with it. Second, they need to discover the effects associated with it; in other words, to get “high,” individuals not only have to experience what the drug does, but also to become aware that those sensations are related to using it. Third, they require learning to savor the feelings related to its consumption – to develop an acquired taste. Becker, who played music himself, gets close to the phenomenon by observing, taking part, and by talking to people consuming the drug: “half of the fifty interviews were conducted with musicians, the other half covered a wide range of people, including laborers, machinists, and people in the professions” (Becker 1963 :56).

Another central aspect derived through the common-to-all-research interplay between induction and deduction (Becker 2017 ), is that during the course of his research Becker adds scientifically meaningful new distinctions in the form of three phases—distinctions, or findings if you will, that strongly affect the course of his research: its focus, the material that he collects, and which eventually impact his findings. Each phase typically unfolds through social interaction, and often with input from experienced users in “a sequence of social experiences during which the person acquires a conception of the meaning of the behavior, and perceptions and judgments of objects and situations, all of which make the activity possible and desirable” (Becker 1963 :235). In this study the increased understanding of smoking dope is a result of a combination of the meaning of the actors, and the conceptual distinctions that Becker introduces based on the views expressed by his respondents. Understanding is the result of research and is due to an iterative process in which data, concepts and evidence are connected with one another (Becker 2017 ).

Indeed, there are many definitions of qualitative research, but if we look for a definition that addresses its distinctive feature of being “qualitative,” the literature across the broad field of social science is meager. The main reason behind this article lies in the paradox, which, to put it bluntly, is that researchers act as if they know what it is, but they cannot formulate a coherent definition. Sociologists and others will of course continue to conduct good studies that show the relevance and value of qualitative research addressing scientific and practical problems in society. However, our paper is grounded in the idea that providing a clear definition will help us improve the work that we do. Among researchers who practice qualitative research there is clearly much knowledge. We suggest that a definition makes this knowledge more explicit. If the first rationale for writing this paper refers to the “internal” aim of improving qualitative research, the second refers to the increased “external” pressure that especially many qualitative researchers feel; pressure that comes both from society as well as from other scientific approaches. There is a strong core in qualitative research, and leading researchers tend to agree on what it is and how it is done. Our critique is not directed at the practice of qualitative research, but we do claim that the type of systematic work we do has not yet been done, and that it is useful to improve the field and its status in relation to quantitative research.

The literature on the “internal” aim of improving, or at least clarifying qualitative research is large, and we do not claim to be the first to notice the vagueness of the term “qualitative” (Strauss and Corbin 1998 ). Also, others have noted that there is no single definition of it (Long and Godfrey 2004 :182), that there are many different views on qualitative research (Denzin and Lincoln 2003 :11; Jovanović 2011 :3), and that more generally, we need to define its meaning (Best 2004 :54). Strauss and Corbin ( 1998 ), for example, as well as Nelson et al. (1992:2 cited in Denzin and Lincoln 2003 :11), and Flick ( 2007 :ix–x), have recognized that the term is problematic: “Actually, the term ‘qualitative research’ is confusing because it can mean different things to different people” (Strauss and Corbin 1998 :10–11). Hammersley has discussed the possibility of addressing the problem, but states that “the task of providing an account of the distinctive features of qualitative research is far from straightforward” ( 2013 :2). This confusion, as he has recently further argued (Hammersley 2018 ), is also salient in relation to ethnography where different philosophical and methodological approaches lead to a lack of agreement about what it means.

Others (e.g. Hammersley 2018 ; Fine and Hancock 2017 ) have also identified the treat to qualitative research that comes from external forces, seen from the point of view of “qualitative research.” This threat can be further divided into that which comes from inside academia, such as the critique voiced by “quantitative research” and outside of academia, including, for example, New Public Management. Hammersley ( 2018 ), zooming in on one type of qualitative research, ethnography, has argued that it is under treat. Similarly to Fine ( 2003 ), and before him Gans ( 1999 ), he writes that ethnography’ has acquired a range of meanings, and comes in many different versions, these often reflecting sharply divergent epistemological orientations. And already more than twenty years ago while reviewing Denzin and Lincoln’ s Handbook of Qualitative Methods Fine argued:

While this increasing centrality [of qualitative research] might lead one to believe that consensual standards have developed, this belief would be misleading. As the methodology becomes more widely accepted, querulous challengers have raised fundamental questions that collectively have undercut the traditional models of how qualitative research is to be fashioned and presented (1995:417).

According to Hammersley, there are today “serious treats to the practice of ethnographic work, on almost any definition” ( 2018 :1). He lists five external treats: (1) that social research must be accountable and able to show its impact on society; (2) the current emphasis on “big data” and the emphasis on quantitative data and evidence; (3) the labor market pressure in academia that leaves less time for fieldwork (see also Fine and Hancock 2017 ); (4) problems of access to fields; and (5) the increased ethical scrutiny of projects, to which ethnography is particularly exposed. Hammersley discusses some more or less insufficient existing definitions of ethnography.

The current situation, as Hammersley and others note—and in relation not only to ethnography but also qualitative research in general, and as our empirical study shows—is not just unsatisfactory, it may even be harmful for the entire field of qualitative research, and does not help social science at large. We suggest that the lack of clarity of qualitative research is a real problem that must be addressed.

Towards a Definition of Qualitative Research

Seen in an historical light, what is today called qualitative, or sometimes ethnographic, interpretative research – or a number of other terms – has more or less always existed. At the time the founders of sociology – Simmel, Weber, Durkheim and, before them, Marx – were writing, and during the era of the Methodenstreit (“dispute about methods”) in which the German historical school emphasized scientific methods (cf. Swedberg 1990 ), we can at least speak of qualitative forerunners.

Perhaps the most extended discussion of what later became known as qualitative methods in a classic work is Bronisław Malinowski’s ( 1922 ) Argonauts in the Western Pacific , although even this study does not explicitly address the meaning of “qualitative.” In Weber’s ([1921–-22] 1978) work we find a tension between scientific explanations that are based on observation and quantification and interpretative research (see also Lazarsfeld and Barton 1982 ).

If we look through major sociology journals like the American Sociological Review , American Journal of Sociology , or Social Forces we will not find the term qualitative sociology before the 1970s. And certainly before then much of what we consider qualitative classics in sociology, like Becker’ study ( 1963 ), had already been produced. Indeed, the Chicago School often combined qualitative and quantitative data within the same study (Fine 1995 ). Our point being that before a disciplinary self-awareness the term quantitative preceded qualitative, and the articulation of the former was a political move to claim scientific status (Denzin and Lincoln 2005 ). In the US the World War II seem to have sparked a critique of sociological work, including “qualitative work,” that did not follow the scientific canon (Rawls 2018 ), which was underpinned by a scientifically oriented and value free philosophy of science. As a result the attempts and practice of integrating qualitative and quantitative sociology at Chicago lost ground to sociology that was more oriented to surveys and quantitative work at Columbia under Merton-Lazarsfeld. The quantitative tradition was also able to present textbooks (Lundberg 1951 ) that facilitated the use this approach and its “methods.” The practices of the qualitative tradition, by and large, remained tacit or was part of the mentoring transferred from the renowned masters to their students.

This glimpse into history leads us back to the lack of a coherent account condensed in a definition of qualitative research. Many of the attempts to define the term do not meet the requirements of a proper definition: A definition should be clear, avoid tautology, demarcate its domain in relation to the environment, and ideally only use words in its definiens that themselves are not in need of definition (Hempel 1966 ). A definition can enhance precision and thus clarity by identifying the core of the phenomenon. Preferably, a definition should be short. The typical definition we have found, however, is an ostensive definition, which indicates what qualitative research is about without informing us about what it actually is :

Qualitative research is multimethod in focus, involving an interpretative, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Qualitative research involves the studied use and collection of a variety of empirical materials – case study, personal experience, introspective, life story, interview, observational, historical, interactional, and visual texts – that describe routine and problematic moments and meanings in individuals’ lives. (Denzin and Lincoln 2005 :2)

Flick claims that the label “qualitative research” is indeed used as an umbrella for a number of approaches ( 2007 :2–4; 2002 :6), and it is not difficult to identify research fitting this designation. Moreover, whatever it is, it has grown dramatically over the past five decades. In addition, courses have been developed, methods have flourished, arguments about its future have been advanced (for example, Denzin and Lincoln 1994) and criticized (for example, Snow and Morrill 1995 ), and dedicated journals and books have mushroomed. Most social scientists have a clear idea of research and how it differs from journalism, politics and other activities. But the question of what is qualitative in qualitative research is either eluded or eschewed.

We maintain that this lacuna hinders systematic knowledge production based on qualitative research. Paul Lazarsfeld noted the lack of “codification” as early as 1955 when he reviewed 100 qualitative studies in order to offer a codification of the practices (Lazarsfeld and Barton 1982 :239). Since then many texts on “qualitative research” and its methods have been published, including recent attempts (Goertz and Mahoney 2012 ) similar to Lazarsfeld’s. These studies have tried to extract what is qualitative by looking at the large number of empirical “qualitative” studies. Our novel strategy complements these endeavors by taking another approach and looking at the attempts to codify these practices in the form of a definition, as well as to a minor extent take Becker’s study as an exemplar of what qualitative researchers actually do, and what the characteristic of being ‘qualitative’ denotes and implies. We claim that qualitative researchers, if there is such a thing as “qualitative research,” should be able to codify their practices in a condensed, yet general way expressed in language.

Lingering problems of “generalizability” and “how many cases do I need” (Small 2009 ) are blocking advancement – in this line of work qualitative approaches are said to differ considerably from quantitative ones, while some of the former unsuccessfully mimic principles related to the latter (Small 2009 ). Additionally, quantitative researchers sometimes unfairly criticize the first based on their own quality criteria. Scholars like Goertz and Mahoney ( 2012 ) have successfully focused on the different norms and practices beyond what they argue are essentially two different cultures: those working with either qualitative or quantitative methods. Instead, similarly to Becker ( 2017 ) who has recently questioned the usefulness of the distinction between qualitative and quantitative research, we focus on similarities.

The current situation also impedes both students and researchers in focusing their studies and understanding each other’s work (Lazarsfeld and Barton 1982 :239). A third consequence is providing an opening for critiques by scholars operating within different traditions (Valsiner 2000 :101). A fourth issue is that the “implicit use of methods in qualitative research makes the field far less standardized than the quantitative paradigm” (Goertz and Mahoney 2012 :9). Relatedly, the National Science Foundation in the US organized two workshops in 2004 and 2005 to address the scientific foundations of qualitative research involving strategies to improve it and to develop standards of evaluation in qualitative research. However, a specific focus on its distinguishing feature of being “qualitative” while being implicitly acknowledged, was discussed only briefly (for example, Best 2004 ).

In 2014 a theme issue was published in this journal on “Methods, Materials, and Meanings: Designing Cultural Analysis,” discussing central issues in (cultural) qualitative research (Berezin 2014 ; Biernacki 2014 ; Glaeser 2014 ; Lamont and Swidler 2014 ; Spillman 2014). We agree with many of the arguments put forward, such as the risk of methodological tribalism, and that we should not waste energy on debating methods separated from research questions. Nonetheless, a clarification of the relation to what is called “quantitative research” is of outmost importance to avoid misunderstandings and misguided debates between “qualitative” and “quantitative” researchers. Our strategy means that researchers, “qualitative” or “quantitative” they may be, in their actual practice may combine qualitative work and quantitative work.

In this article we accomplish three tasks. First, we systematically survey the literature for meanings of qualitative research by looking at how researchers have defined it. Drawing upon existing knowledge we find that the different meanings and ideas of qualitative research are not yet coherently integrated into one satisfactory definition. Next, we advance our contribution by offering a definition of qualitative research and illustrate its meaning and use partially by expanding on the brief example introduced earlier related to Becker’s work ( 1963 ). We offer a systematic analysis of central themes of what researchers consider to be the core of “qualitative,” regardless of style of work. These themes – which we summarize in terms of four keywords: distinction, process, closeness, improved understanding – constitute part of our literature review, in which each one appears, sometimes with others, but never all in the same definition. They serve as the foundation of our contribution. Our categories are overlapping. Their use is primarily to organize the large amount of definitions we have identified and analyzed, and not necessarily to draw a clear distinction between them. Finally, we continue the elaboration discussed above on the advantages of a clear definition of qualitative research.

In a hermeneutic fashion we propose that there is something meaningful that deserves to be labelled “qualitative research” (Gadamer 1990 ). To approach the question “What is qualitative in qualitative research?” we have surveyed the literature. In conducting our survey we first traced the word’s etymology in dictionaries, encyclopedias, handbooks of the social sciences and of methods and textbooks, mainly in English, which is common to methodology courses. It should be noted that we have zoomed in on sociology and its literature. This discipline has been the site of the largest debate and development of methods that can be called “qualitative,” which suggests that this field should be examined in great detail.

In an ideal situation we should expect that one good definition, or at least some common ideas, would have emerged over the years. This common core of qualitative research should be so accepted that it would appear in at least some textbooks. Since this is not what we found, we decided to pursue an inductive approach to capture maximal variation in the field of qualitative research; we searched in a selection of handbooks, textbooks, book chapters, and books, to which we added the analysis of journal articles. Our sample comprises a total of 89 references.

In practice we focused on the discipline that has had a clear discussion of methods, namely sociology. We also conducted a broad search in the JSTOR database to identify scholarly sociology articles published between 1998 and 2017 in English with a focus on defining or explaining qualitative research. We specifically zoom in on this time frame because we would have expect that this more mature period would have produced clear discussions on the meaning of qualitative research. To find these articles we combined a number of keywords to search the content and/or the title: qualitative (which was always included), definition, empirical, research, methodology, studies, fieldwork, interview and observation .

As a second phase of our research we searched within nine major sociological journals ( American Journal of Sociology , Sociological Theory , American Sociological Review , Contemporary Sociology , Sociological Forum , Sociological Theory , Qualitative Research , Qualitative Sociology and Qualitative Sociology Review ) for articles also published during the past 19 years (1998–2017) that had the term “qualitative” in the title and attempted to define qualitative research.

Lastly we picked two additional journals, Qualitative Research and Qualitative Sociology , in which we could expect to find texts addressing the notion of “qualitative.” From Qualitative Research we chose Volume 14, Issue 6, December 2014, and from Qualitative Sociology we chose Volume 36, Issue 2, June 2017. Within each of these we selected the first article; then we picked the second article of three prior issues. Again we went back another three issues and investigated article number three. Finally we went back another three issues and perused article number four. This selection criteria was used to get a manageable sample for the analysis.

The coding process of the 89 references we gathered in our selected review began soon after the first round of material was gathered, and we reduced the complexity created by our maximum variation sampling (Snow and Anderson 1993 :22) to four different categories within which questions on the nature and properties of qualitative research were discussed. We call them: Qualitative and Quantitative Research, Qualitative Research, Fieldwork, and Grounded Theory. This – which may appear as an illogical grouping – merely reflects the “context” in which the matter of “qualitative” is discussed. If the selection process of the material – books and articles – was informed by pre-knowledge, we used an inductive strategy to code the material. When studying our material, we identified four central notions related to “qualitative” that appear in various combinations in the literature which indicate what is the core of qualitative research. We have labeled them: “distinctions”, “process,” “closeness,” and “improved understanding.” During the research process the categories and notions were improved, refined, changed, and reordered. The coding ended when a sense of saturation in the material arose. In the presentation below all quotations and references come from our empirical material of texts on qualitative research.

Analysis – What is Qualitative Research?

In this section we describe the four categories we identified in the coding, how they differently discuss qualitative research, as well as their overall content. Some salient quotations are selected to represent the type of text sorted under each of the four categories. What we present are examples from the literature.

Qualitative and Quantitative

This analytic category comprises quotations comparing qualitative and quantitative research, a distinction that is frequently used (Brown 2010 :231); in effect this is a conceptual pair that structures the discussion and that may be associated with opposing interests. While the general goal of quantitative and qualitative research is the same – to understand the world better – their methodologies and focus in certain respects differ substantially (Becker 1966 :55). Quantity refers to that property of something that can be determined by measurement. In a dictionary of Statistics and Methodology we find that “(a) When referring to *variables, ‘qualitative’ is another term for *categorical or *nominal. (b) When speaking of kinds of research, ‘qualitative’ refers to studies of subjects that are hard to quantify, such as art history. Qualitative research tends to be a residual category for almost any kind of non-quantitative research” (Stiles 1998:183). But it should be obvious that one could employ a quantitative approach when studying, for example, art history.

The same dictionary states that quantitative is “said of variables or research that can be handled numerically, usually (too sharply) contrasted with *qualitative variables and research” (Stiles 1998:184). From a qualitative perspective “quantitative research” is about numbers and counting, and from a quantitative perspective qualitative research is everything that is not about numbers. But this does not say much about what is “qualitative.” If we turn to encyclopedias we find that in the 1932 edition of the Encyclopedia of the Social Sciences there is no mention of “qualitative.” In the Encyclopedia from 1968 we can read:

Qualitative Analysis. For methods of obtaining, analyzing, and describing data, see [the various entries:] CONTENT ANALYSIS; COUNTED DATA; EVALUATION RESEARCH, FIELD WORK; GRAPHIC PRESENTATION; HISTORIOGRAPHY, especially the article on THE RHETORIC OF HISTORY; INTERVIEWING; OBSERVATION; PERSONALITY MEASUREMENT; PROJECTIVE METHODS; PSYCHOANALYSIS, article on EXPERIMENTAL METHODS; SURVEY ANALYSIS, TABULAR PRESENTATION; TYPOLOGIES. (Vol. 13:225)

Some, like Alford, divide researchers into methodologists or, in his words, “quantitative and qualitative specialists” (Alford 1998 :12). Qualitative research uses a variety of methods, such as intensive interviews or in-depth analysis of historical materials, and it is concerned with a comprehensive account of some event or unit (King et al. 1994 :4). Like quantitative research it can be utilized to study a variety of issues, but it tends to focus on meanings and motivations that underlie cultural symbols, personal experiences, phenomena and detailed understanding of processes in the social world. In short, qualitative research centers on understanding processes, experiences, and the meanings people assign to things (Kalof et al. 2008 :79).

Others simply say that qualitative methods are inherently unscientific (Jovanović 2011 :19). Hood, for instance, argues that words are intrinsically less precise than numbers, and that they are therefore more prone to subjective analysis, leading to biased results (Hood 2006 :219). Qualitative methodologies have raised concerns over the limitations of quantitative templates (Brady et al. 2004 :4). Scholars such as King et al. ( 1994 ), for instance, argue that non-statistical research can produce more reliable results if researchers pay attention to the rules of scientific inference commonly stated in quantitative research. Also, researchers such as Becker ( 1966 :59; 1970 :42–43) have asserted that, if conducted properly, qualitative research and in particular ethnographic field methods, can lead to more accurate results than quantitative studies, in particular, survey research and laboratory experiments.

Some researchers, such as Kalof, Dan, and Dietz ( 2008 :79) claim that the boundaries between the two approaches are becoming blurred, and Small ( 2009 ) argues that currently much qualitative research (especially in North America) tries unsuccessfully and unnecessarily to emulate quantitative standards. For others, qualitative research tends to be more humanistic and discursive (King et al. 1994 :4). Ragin ( 1994 ), and similarly also Becker, ( 1996 :53), Marchel and Owens ( 2007 :303) think that the main distinction between the two styles is overstated and does not rest on the simple dichotomy of “numbers versus words” (Ragin 1994 :xii). Some claim that quantitative data can be utilized to discover associations, but in order to unveil cause and effect a complex research design involving the use of qualitative approaches needs to be devised (Gilbert 2009 :35). Consequently, qualitative data are useful for understanding the nuances lying beyond those processes as they unfold (Gilbert 2009 :35). Others contend that qualitative research is particularly well suited both to identify causality and to uncover fine descriptive distinctions (Fine and Hallett 2014 ; Lichterman and Isaac Reed 2014 ; Katz 2015 ).

There are other ways to separate these two traditions, including normative statements about what qualitative research should be (that is, better or worse than quantitative approaches, concerned with scientific approaches to societal change or vice versa; Snow and Morrill 1995 ; Denzin and Lincoln 2005 ), or whether it should develop falsifiable statements; Best 2004 ).

We propose that quantitative research is largely concerned with pre-determined variables (Small 2008 ); the analysis concerns the relations between variables. These categories are primarily not questioned in the study, only their frequency or degree, or the correlations between them (cf. Franzosi 2016 ). If a researcher studies wage differences between women and men, he or she works with given categories: x number of men are compared with y number of women, with a certain wage attributed to each person. The idea is not to move beyond the given categories of wage, men and women; they are the starting point as well as the end point, and undergo no “qualitative change.” Qualitative research, in contrast, investigates relations between categories that are themselves subject to change in the research process. Returning to Becker’s study ( 1963 ), we see that he questioned pre-dispositional theories of deviant behavior working with pre-determined variables such as an individual’s combination of personal qualities or emotional problems. His take, in contrast, was to understand marijuana consumption by developing “variables” as part of the investigation. Thereby he presented new variables, or as we would say today, theoretical concepts, but which are grounded in the empirical material.

Qualitative Research

This category contains quotations that refer to descriptions of qualitative research without making comparisons with quantitative research. Researchers such as Denzin and Lincoln, who have written a series of influential handbooks on qualitative methods (1994; Denzin and Lincoln 2003 ; 2005 ), citing Nelson et al. (1992:4), argue that because qualitative research is “interdisciplinary, transdisciplinary, and sometimes counterdisciplinary” it is difficult to derive one single definition of it (Jovanović 2011 :3). According to them, in fact, “the field” is “many things at the same time,” involving contradictions, tensions over its focus, methods, and how to derive interpretations and findings ( 2003 : 11). Similarly, others, such as Flick ( 2007 :ix–x) contend that agreeing on an accepted definition has increasingly become problematic, and that qualitative research has possibly matured different identities. However, Best holds that “the proliferation of many sorts of activities under the label of qualitative sociology threatens to confuse our discussions” ( 2004 :54). Atkinson’s position is more definite: “the current state of qualitative research and research methods is confused” ( 2005 :3–4).

Qualitative research is about interpretation (Blumer 1969 ; Strauss and Corbin 1998 ; Denzin and Lincoln 2003 ), or Verstehen [understanding] (Frankfort-Nachmias and Nachmias 1996 ). It is “multi-method,” involving the collection and use of a variety of empirical materials (Denzin and Lincoln 1998; Silverman 2013 ) and approaches (Silverman 2005 ; Flick 2007 ). It focuses not only on the objective nature of behavior but also on its subjective meanings: individuals’ own accounts of their attitudes, motivations, behavior (McIntyre 2005 :127; Creswell 2009 ), events and situations (Bryman 1989) – what people say and do in specific places and institutions (Goodwin and Horowitz 2002 :35–36) in social and temporal contexts (Morrill and Fine 1997). For this reason, following Weber ([1921-22] 1978), it can be described as an interpretative science (McIntyre 2005 :127). But could quantitative research also be concerned with these questions? Also, as pointed out below, does all qualitative research focus on subjective meaning, as some scholars suggest?

Others also distinguish qualitative research by claiming that it collects data using a naturalistic approach (Denzin and Lincoln 2005 :2; Creswell 2009 ), focusing on the meaning actors ascribe to their actions. But again, does all qualitative research need to be collected in situ? And does qualitative research have to be inherently concerned with meaning? Flick ( 2007 ), referring to Denzin and Lincoln ( 2005 ), mentions conversation analysis as an example of qualitative research that is not concerned with the meanings people bring to a situation, but rather with the formal organization of talk. Still others, such as Ragin ( 1994 :85), note that qualitative research is often (especially early on in the project, we would add) less structured than other kinds of social research – a characteristic connected to its flexibility and that can lead both to potentially better, but also worse results. But is this not a feature of this type of research, rather than a defining description of its essence? Wouldn’t this comment also apply, albeit to varying degrees, to quantitative research?

In addition, Strauss ( 2003 ), along with others, such as Alvesson and Kärreman ( 2011 :10–76), argue that qualitative researchers struggle to capture and represent complex phenomena partially because they tend to collect a large amount of data. While his analysis is correct at some points – “It is necessary to do detailed, intensive, microscopic examination of the data in order to bring out the amazing complexity of what lies in, behind, and beyond those data” (Strauss 2003 :10) – much of his analysis concerns the supposed focus of qualitative research and its challenges, rather than exactly what it is about. But even in this instance we would make a weak case arguing that these are strictly the defining features of qualitative research. Some researchers seem to focus on the approach or the methods used, or even on the way material is analyzed. Several researchers stress the naturalistic assumption of investigating the world, suggesting that meaning and interpretation appear to be a core matter of qualitative research.

We can also see that in this category there is no consensus about specific qualitative methods nor about qualitative data. Many emphasize interpretation, but quantitative research, too, involves interpretation; the results of a regression analysis, for example, certainly have to be interpreted, and the form of meta-analysis that factor analysis provides indeed requires interpretation However, there is no interpretation of quantitative raw data, i.e., numbers in tables. One common thread is that qualitative researchers have to get to grips with their data in order to understand what is being studied in great detail, irrespective of the type of empirical material that is being analyzed. This observation is connected to the fact that qualitative researchers routinely make several adjustments of focus and research design as their studies progress, in many cases until the very end of the project (Kalof et al. 2008 ). If you, like Becker, do not start out with a detailed theory, adjustments such as the emergence and refinement of research questions will occur during the research process. We have thus found a number of useful reflections about qualitative research scattered across different sources, but none of them effectively describe the defining characteristics of this approach.

Although qualitative research does not appear to be defined in terms of a specific method, it is certainly common that fieldwork, i.e., research that entails that the researcher spends considerable time in the field that is studied and use the knowledge gained as data, is seen as emblematic of or even identical to qualitative research. But because we understand that fieldwork tends to focus primarily on the collection and analysis of qualitative data, we expected to find within it discussions on the meaning of “qualitative.” But, again, this was not the case.

Instead, we found material on the history of this approach (for example, Frankfort-Nachmias and Nachmias 1996 ; Atkinson et al. 2001), including how it has changed; for example, by adopting a more self-reflexive practice (Heyl 2001), as well as the different nomenclature that has been adopted, such as fieldwork, ethnography, qualitative research, naturalistic research, participant observation and so on (for example, Lofland et al. 2006 ; Gans 1999 ).

We retrieved definitions of ethnography, such as “the study of people acting in the natural courses of their daily lives,” involving a “resocialization of the researcher” (Emerson 1988 :1) through intense immersion in others’ social worlds (see also examples in Hammersley 2018 ). This may be accomplished by direct observation and also participation (Neuman 2007 :276), although others, such as Denzin ( 1970 :185), have long recognized other types of observation, including non-participant (“fly on the wall”). In this category we have also isolated claims and opposing views, arguing that this type of research is distinguished primarily by where it is conducted (natural settings) (Hughes 1971:496), and how it is carried out (a variety of methods are applied) or, for some most importantly, by involving an active, empathetic immersion in those being studied (Emerson 1988 :2). We also retrieved descriptions of the goals it attends in relation to how it is taught (understanding subjective meanings of the people studied, primarily develop theory, or contribute to social change) (see for example, Corte and Irwin 2017 ; Frankfort-Nachmias and Nachmias 1996 :281; Trier-Bieniek 2012 :639) by collecting the richest possible data (Lofland et al. 2006 ) to derive “thick descriptions” (Geertz 1973 ), and/or to aim at theoretical statements of general scope and applicability (for example, Emerson 1988 ; Fine 2003 ). We have identified guidelines on how to evaluate it (for example Becker 1996 ; Lamont 2004 ) and have retrieved instructions on how it should be conducted (for example, Lofland et al. 2006 ). For instance, analysis should take place while the data gathering unfolds (Emerson 1988 ; Hammersley and Atkinson 2007 ; Lofland et al. 2006 ), observations should be of long duration (Becker 1970 :54; Goffman 1989 ), and data should be of high quantity (Becker 1970 :52–53), as well as other questionable distinctions between fieldwork and other methods:

Field studies differ from other methods of research in that the researcher performs the task of selecting topics, decides what questions to ask, and forges interest in the course of the research itself . This is in sharp contrast to many ‘theory-driven’ and ‘hypothesis-testing’ methods. (Lofland and Lofland 1995 :5)

But could not, for example, a strictly interview-based study be carried out with the same amount of flexibility, such as sequential interviewing (for example, Small 2009 )? Once again, are quantitative approaches really as inflexible as some qualitative researchers think? Moreover, this category stresses the role of the actors’ meaning, which requires knowledge and close interaction with people, their practices and their lifeworld.

It is clear that field studies – which are seen by some as the “gold standard” of qualitative research – are nonetheless only one way of doing qualitative research. There are other methods, but it is not clear why some are more qualitative than others, or why they are better or worse. Fieldwork is characterized by interaction with the field (the material) and understanding of the phenomenon that is being studied. In Becker’s case, he had general experience from fields in which marihuana was used, based on which he did interviews with actual users in several fields.

Grounded Theory

Another major category we identified in our sample is Grounded Theory. We found descriptions of it most clearly in Glaser and Strauss’ ([1967] 2010 ) original articulation, Strauss and Corbin ( 1998 ) and Charmaz ( 2006 ), as well as many other accounts of what it is for: generating and testing theory (Strauss 2003 :xi). We identified explanations of how this task can be accomplished – such as through two main procedures: constant comparison and theoretical sampling (Emerson 1998:96), and how using it has helped researchers to “think differently” (for example, Strauss and Corbin 1998 :1). We also read descriptions of its main traits, what it entails and fosters – for instance, an exceptional flexibility, an inductive approach (Strauss and Corbin 1998 :31–33; 1990; Esterberg 2002 :7), an ability to step back and critically analyze situations, recognize tendencies towards bias, think abstractly and be open to criticism, enhance sensitivity towards the words and actions of respondents, and develop a sense of absorption and devotion to the research process (Strauss and Corbin 1998 :5–6). Accordingly, we identified discussions of the value of triangulating different methods (both using and not using grounded theory), including quantitative ones, and theories to achieve theoretical development (most comprehensively in Denzin 1970 ; Strauss and Corbin 1998 ; Timmermans and Tavory 2012 ). We have also located arguments about how its practice helps to systematize data collection, analysis and presentation of results (Glaser and Strauss [1967] 2010 :16).

Grounded theory offers a systematic approach which requires researchers to get close to the field; closeness is a requirement of identifying questions and developing new concepts or making further distinctions with regard to old concepts. In contrast to other qualitative approaches, grounded theory emphasizes the detailed coding process, and the numerous fine-tuned distinctions that the researcher makes during the process. Within this category, too, we could not find a satisfying discussion of the meaning of qualitative research.

Defining Qualitative Research

In sum, our analysis shows that some notions reappear in the discussion of qualitative research, such as understanding, interpretation, “getting close” and making distinctions. These notions capture aspects of what we think is “qualitative.” However, a comprehensive definition that is useful and that can further develop the field is lacking, and not even a clear picture of its essential elements appears. In other words no definition emerges from our data, and in our research process we have moved back and forth between our empirical data and the attempt to present a definition. Our concrete strategy, as stated above, is to relate qualitative and quantitative research, or more specifically, qualitative and quantitative work. We use an ideal-typical notion of quantitative research which relies on taken for granted and numbered variables. This means that the data consists of variables on different scales, such as ordinal, but frequently ratio and absolute scales, and the representation of the numbers to the variables, i.e. the justification of the assignment of numbers to object or phenomenon, are not questioned, though the validity may be questioned. In this section we return to the notion of quality and try to clarify it while presenting our contribution.

Broadly, research refers to the activity performed by people trained to obtain knowledge through systematic procedures. Notions such as “objectivity” and “reflexivity,” “systematic,” “theory,” “evidence” and “openness” are here taken for granted in any type of research. Next, building on our empirical analysis we explain the four notions that we have identified as central to qualitative work: distinctions, process, closeness, and improved understanding. In discussing them, ultimately in relation to one another, we make their meaning even more precise. Our idea, in short, is that only when these ideas that we present separately for analytic purposes are brought together can we speak of qualitative research.

Distinctions

We believe that the possibility of making new distinctions is one the defining characteristics of qualitative research. It clearly sets it apart from quantitative analysis which works with taken-for-granted variables, albeit as mentioned, meta-analyses, for example, factor analysis may result in new variables. “Quality” refers essentially to distinctions, as already pointed out by Aristotle. He discusses the term “qualitative” commenting: “By a quality I mean that in virtue of which things are said to be qualified somehow” (Aristotle 1984:14). Quality is about what something is or has, which means that the distinction from its environment is crucial. We see qualitative research as a process in which significant new distinctions are made to the scholarly community; to make distinctions is a key aspect of obtaining new knowledge; a point, as we will see, that also has implications for “quantitative research.” The notion of being “significant” is paramount. New distinctions by themselves are not enough; just adding concepts only increases complexity without furthering our knowledge. The significance of new distinctions is judged against the communal knowledge of the research community. To enable this discussion and judgements central elements of rational discussion are required (cf. Habermas [1981] 1987 ; Davidsson [ 1988 ] 2001) to identify what is new and relevant scientific knowledge. Relatedly, Ragin alludes to the idea of new and useful knowledge at a more concrete level: “Qualitative methods are appropriate for in-depth examination of cases because they aid the identification of key features of cases. Most qualitative methods enhance data” (1994:79). When Becker ( 1963 ) studied deviant behavior and investigated how people became marihuana smokers, he made distinctions between the ways in which people learned how to smoke. This is a classic example of how the strategy of “getting close” to the material, for example the text, people or pictures that are subject to analysis, may enable researchers to obtain deeper insight and new knowledge by making distinctions – in this instance on the initial notion of learning how to smoke. Others have stressed the making of distinctions in relation to coding or theorizing. Emerson et al. ( 1995 ), for example, hold that “qualitative coding is a way of opening up avenues of inquiry,” meaning that the researcher identifies and develops concepts and analytic insights through close examination of and reflection on data (Emerson et al. 1995 :151). Goodwin and Horowitz highlight making distinctions in relation to theory-building writing: “Close engagement with their cases typically requires qualitative researchers to adapt existing theories or to make new conceptual distinctions or theoretical arguments to accommodate new data” ( 2002 : 37). In the ideal-typical quantitative research only existing and so to speak, given, variables would be used. If this is the case no new distinction are made. But, would not also many “quantitative” researchers make new distinctions?

Process does not merely suggest that research takes time. It mainly implies that qualitative new knowledge results from a process that involves several phases, and above all iteration. Qualitative research is about oscillation between theory and evidence, analysis and generating material, between first- and second -order constructs (Schütz 1962 :59), between getting in contact with something, finding sources, becoming deeply familiar with a topic, and then distilling and communicating some of its essential features. The main point is that the categories that the researcher uses, and perhaps takes for granted at the beginning of the research process, usually undergo qualitative changes resulting from what is found. Becker describes how he tested hypotheses and let the jargon of the users develop into theoretical concepts. This happens over time while the study is being conducted, exemplifying what we mean by process.

In the research process, a pilot-study may be used to get a first glance of, for example, the field, how to approach it, and what methods can be used, after which the method and theory are chosen or refined before the main study begins. Thus, the empirical material is often central from the start of the project and frequently leads to adjustments by the researcher. Likewise, during the main study categories are not fixed; the empirical material is seen in light of the theory used, but it is also given the opportunity to kick back, thereby resisting attempts to apply theoretical straightjackets (Becker 1970 :43). In this process, coding and analysis are interwoven, and thus are often important steps for getting closer to the phenomenon and deciding what to focus on next. Becker began his research by interviewing musicians close to him, then asking them to refer him to other musicians, and later on doubling his original sample of about 25 to include individuals in other professions (Becker 1973:46). Additionally, he made use of some participant observation, documents, and interviews with opiate users made available to him by colleagues. As his inductive theory of deviance evolved, Becker expanded his sample in order to fine tune it, and test the accuracy and generality of his hypotheses. In addition, he introduced a negative case and discussed the null hypothesis ( 1963 :44). His phasic career model is thus based on a research design that embraces processual work. Typically, process means to move between “theory” and “material” but also to deal with negative cases, and Becker ( 1998 ) describes how discovering these negative cases impacted his research design and ultimately its findings.

Obviously, all research is process-oriented to some degree. The point is that the ideal-typical quantitative process does not imply change of the data, and iteration between data, evidence, hypotheses, empirical work, and theory. The data, quantified variables, are, in most cases fixed. Merging of data, which of course can be done in a quantitative research process, does not mean new data. New hypotheses are frequently tested, but the “raw data is often the “the same.” Obviously, over time new datasets are made available and put into use.

Another characteristic that is emphasized in our sample is that qualitative researchers – and in particular ethnographers – can, or as Goffman put it, ought to ( 1989 ), get closer to the phenomenon being studied and their data than quantitative researchers (for example, Silverman 2009 :85). Put differently, essentially because of their methods qualitative researchers get into direct close contact with those being investigated and/or the material, such as texts, being analyzed. Becker started out his interview study, as we noted, by talking to those he knew in the field of music to get closer to the phenomenon he was studying. By conducting interviews he got even closer. Had he done more observations, he would undoubtedly have got even closer to the field.

Additionally, ethnographers’ design enables researchers to follow the field over time, and the research they do is almost by definition longitudinal, though the time in the field is studied obviously differs between studies. The general characteristic of closeness over time maximizes the chances of unexpected events, new data (related, for example, to archival research as additional sources, and for ethnography for situations not necessarily previously thought of as instrumental – what Mannay and Morgan ( 2015 ) term the “waiting field”), serendipity (Merton and Barber 2004 ; Åkerström 2013 ), and possibly reactivity, as well as the opportunity to observe disrupted patterns that translate into exemplars of negative cases. Two classic examples of this are Becker’s finding of what medical students call “crocks” (Becker et al. 1961 :317), and Geertz’s ( 1973 ) study of “deep play” in Balinese society.

By getting and staying so close to their data – be it pictures, text or humans interacting (Becker was himself a musician) – for a long time, as the research progressively focuses, qualitative researchers are prompted to continually test their hunches, presuppositions and hypotheses. They test them against a reality that often (but certainly not always), and practically, as well as metaphorically, talks back, whether by validating them, or disqualifying their premises – correctly, as well as incorrectly (Fine 2003 ; Becker 1970 ). This testing nonetheless often leads to new directions for the research. Becker, for example, says that he was initially reading psychological theories, but when facing the data he develops a theory that looks at, you may say, everything but psychological dispositions to explain the use of marihuana. Especially researchers involved with ethnographic methods have a fairly unique opportunity to dig up and then test (in a circular, continuous and temporal way) new research questions and findings as the research progresses, and thereby to derive previously unimagined and uncharted distinctions by getting closer to the phenomenon under study.

Let us stress that getting close is by no means restricted to ethnography. The notion of hermeneutic circle and hermeneutics as a general way of understanding implies that we must get close to the details in order to get the big picture. This also means that qualitative researchers can literally also make use of details of pictures as evidence (cf. Harper 2002). Thus, researchers may get closer both when generating the material or when analyzing it.

Quantitative research, we maintain, in the ideal-typical representation cannot get closer to the data. The data is essentially numbers in tables making up the variables (Franzosi 2016 :138). The data may originally have been “qualitative,” but once reduced to numbers there can only be a type of “hermeneutics” about what the number may stand for. The numbers themselves, however, are non-ambiguous. Thus, in quantitative research, interpretation, if done, is not about the data itself—the numbers—but what the numbers stand for. It follows that the interpretation is essentially done in a more “speculative” mode without direct empirical evidence (cf. Becker 2017 ).

Improved Understanding

While distinction, process and getting closer refer to the qualitative work of the researcher, improved understanding refers to its conditions and outcome of this work. Understanding cuts deeper than explanation, which to some may mean a causally verified correlation between variables. The notion of explanation presupposes the notion of understanding since explanation does not include an idea of how knowledge is gained (Manicas 2006 : 15). Understanding, we argue, is the core concept of what we call the outcome of the process when research has made use of all the other elements that were integrated in the research. Understanding, then, has a special status in qualitative research since it refers both to the conditions of knowledge and the outcome of the process. Understanding can to some extent be seen as the condition of explanation and occurs in a process of interpretation, which naturally refers to meaning (Gadamer 1990 ). It is fundamentally connected to knowing, and to the knowing of how to do things (Heidegger [1927] 2001 ). Conceptually the term hermeneutics is used to account for this process. Heidegger ties hermeneutics to human being and not possible to separate from the understanding of being ( 1988 ). Here we use it in a broader sense, and more connected to method in general (cf. Seiffert 1992 ). The abovementioned aspects – for example, “objectivity” and “reflexivity” – of the approach are conditions of scientific understanding. Understanding is the result of a circular process and means that the parts are understood in light of the whole, and vice versa. Understanding presupposes pre-understanding, or in other words, some knowledge of the phenomenon studied. The pre-understanding, even in the form of prejudices, are in qualitative research process, which we see as iterative, questioned, which gradually or suddenly change due to the iteration of data, evidence and concepts. However, qualitative research generates understanding in the iterative process when the researcher gets closer to the data, e.g., by going back and forth between field and analysis in a process that generates new data that changes the evidence, and, ultimately, the findings. Questioning, to ask questions, and put what one assumes—prejudices and presumption—in question, is central to understand something (Heidegger [1927] 2001 ; Gadamer 1990 :368–384). We propose that this iterative process in which the process of understanding occurs is characteristic of qualitative research.

Improved understanding means that we obtain scientific knowledge of something that we as a scholarly community did not know before, or that we get to know something better. It means that we understand more about how parts are related to one another, and to other things we already understand (see also Fine and Hallett 2014 ). Understanding is an important condition for qualitative research. It is not enough to identify correlations, make distinctions, and work in a process in which one gets close to the field or phenomena. Understanding is accomplished when the elements are integrated in an iterative process.

It is, moreover, possible to understand many things, and researchers, just like children, may come to understand new things every day as they engage with the world. This subjective condition of understanding – namely, that a person gains a better understanding of something –is easily met. To be qualified as “scientific,” the understanding must be general and useful to many; it must be public. But even this generally accessible understanding is not enough in order to speak of “scientific understanding.” Though we as a collective can increase understanding of everything in virtually all potential directions as a result also of qualitative work, we refrain from this “objective” way of understanding, which has no means of discriminating between what we gain in understanding. Scientific understanding means that it is deemed relevant from the scientific horizon (compare Schütz 1962 : 35–38, 46, 63), and that it rests on the pre-understanding that the scientists have and must have in order to understand. In other words, the understanding gained must be deemed useful by other researchers, so that they can build on it. We thus see understanding from a pragmatic, rather than a subjective or objective perspective. Improved understanding is related to the question(s) at hand. Understanding, in order to represent an improvement, must be an improvement in relation to the existing body of knowledge of the scientific community (James [ 1907 ] 1955). Scientific understanding is, by definition, collective, as expressed in Weber’s famous note on objectivity, namely that scientific work aims at truths “which … can claim, even for a Chinese, the validity appropriate to an empirical analysis” ([1904] 1949 :59). By qualifying “improved understanding” we argue that it is a general defining characteristic of qualitative research. Becker‘s ( 1966 ) study and other research of deviant behavior increased our understanding of the social learning processes of how individuals start a behavior. And it also added new knowledge about the labeling of deviant behavior as a social process. Few studies, of course, make the same large contribution as Becker’s, but are nonetheless qualitative research.

Understanding in the phenomenological sense, which is a hallmark of qualitative research, we argue, requires meaning and this meaning is derived from the context, and above all the data being analyzed. The ideal-typical quantitative research operates with given variables with different numbers. This type of material is not enough to establish meaning at the level that truly justifies understanding. In other words, many social science explanations offer ideas about correlations or even causal relations, but this does not mean that the meaning at the level of the data analyzed, is understood. This leads us to say that there are indeed many explanations that meet the criteria of understanding, for example the explanation of how one becomes a marihuana smoker presented by Becker. However, we may also understand a phenomenon without explaining it, and we may have potential explanations, or better correlations, that are not really understood.

We may speak more generally of quantitative research and its data to clarify what we see as an important distinction. The “raw data” that quantitative research—as an idealtypical activity, refers to is not available for further analysis; the numbers, once created, are not to be questioned (Franzosi 2016 : 138). If the researcher is to do “more” or “change” something, this will be done by conjectures based on theoretical knowledge or based on the researcher’s lifeworld. Both qualitative and quantitative research is based on the lifeworld, and all researchers use prejudices and pre-understanding in the research process. This idea is present in the works of Heidegger ( 2001 ) and Heisenberg (cited in Franzosi 2010 :619). Qualitative research, as we argued, involves the interaction and questioning of concepts (theory), data, and evidence.

Ragin ( 2004 :22) points out that “a good definition of qualitative research should be inclusive and should emphasize its key strengths and features, not what it lacks (for example, the use of sophisticated quantitative techniques).” We define qualitative research as an iterative process in which improved understanding to the scientific community is achieved by making new significant distinctions resulting from getting closer to the phenomenon studied. Qualitative research, as defined here, is consequently a combination of two criteria: (i) how to do things –namely, generating and analyzing empirical material, in an iterative process in which one gets closer by making distinctions, and (ii) the outcome –improved understanding novel to the scholarly community. Is our definition applicable to our own study? In this study we have closely read the empirical material that we generated, and the novel distinction of the notion “qualitative research” is the outcome of an iterative process in which both deduction and induction were involved, in which we identified the categories that we analyzed. We thus claim to meet the first criteria, “how to do things.” The second criteria cannot be judged but in a partial way by us, namely that the “outcome” —in concrete form the definition-improves our understanding to others in the scientific community.

We have defined qualitative research, or qualitative scientific work, in relation to quantitative scientific work. Given this definition, qualitative research is about questioning the pre-given (taken for granted) variables, but it is thus also about making new distinctions of any type of phenomenon, for example, by coining new concepts, including the identification of new variables. This process, as we have discussed, is carried out in relation to empirical material, previous research, and thus in relation to theory. Theory and previous research cannot be escaped or bracketed. According to hermeneutic principles all scientific work is grounded in the lifeworld, and as social scientists we can thus never fully bracket our pre-understanding.

We have proposed that quantitative research, as an idealtype, is concerned with pre-determined variables (Small 2008 ). Variables are epistemically fixed, but can vary in terms of dimensions, such as frequency or number. Age is an example; as a variable it can take on different numbers. In relation to quantitative research, qualitative research does not reduce its material to number and variables. If this is done the process of comes to a halt, the researcher gets more distanced from her data, and it makes it no longer possible to make new distinctions that increase our understanding. We have above discussed the components of our definition in relation to quantitative research. Our conclusion is that in the research that is called quantitative there are frequent and necessary qualitative elements.

Further, comparative empirical research on researchers primarily working with ”quantitative” approaches and those working with ”qualitative” approaches, we propose, would perhaps show that there are many similarities in practices of these two approaches. This is not to deny dissimilarities, or the different epistemic and ontic presuppositions that may be more or less strongly associated with the two different strands (see Goertz and Mahoney 2012 ). Our point is nonetheless that prejudices and preconceptions about researchers are unproductive, and that as other researchers have argued, differences may be exaggerated (e.g., Becker 1996 : 53, 2017 ; Marchel and Owens 2007 :303; Ragin 1994 ), and that a qualitative dimension is present in both kinds of work.

Several things follow from our findings. The most important result is the relation to quantitative research. In our analysis we have separated qualitative research from quantitative research. The point is not to label individual researchers, methods, projects, or works as either “quantitative” or “qualitative.” By analyzing, i.e., taking apart, the notions of quantitative and qualitative, we hope to have shown the elements of qualitative research. Our definition captures the elements, and how they, when combined in practice, generate understanding. As many of the quotations we have used suggest, one conclusion of our study holds that qualitative approaches are not inherently connected with a specific method. Put differently, none of the methods that are frequently labelled “qualitative,” such as interviews or participant observation, are inherently “qualitative.” What matters, given our definition, is whether one works qualitatively or quantitatively in the research process, until the results are produced. Consequently, our analysis also suggests that those researchers working with what in the literature and in jargon is often called “quantitative research” are almost bound to make use of what we have identified as qualitative elements in any research project. Our findings also suggest that many” quantitative” researchers, at least to some extent, are engaged with qualitative work, such as when research questions are developed, variables are constructed and combined, and hypotheses are formulated. Furthermore, a research project may hover between “qualitative” and “quantitative” or start out as “qualitative” and later move into a “quantitative” (a distinct strategy that is not similar to “mixed methods” or just simply combining induction and deduction). More generally speaking, the categories of “qualitative” and “quantitative,” unfortunately, often cover up practices, and it may lead to “camps” of researchers opposing one another. For example, regardless of the researcher is primarily oriented to “quantitative” or “qualitative” research, the role of theory is neglected (cf. Swedberg 2017 ). Our results open up for an interaction not characterized by differences, but by different emphasis, and similarities.

Let us take two examples to briefly indicate how qualitative elements can fruitfully be combined with quantitative. Franzosi ( 2010 ) has discussed the relations between quantitative and qualitative approaches, and more specifically the relation between words and numbers. He analyzes texts and argues that scientific meaning cannot be reduced to numbers. Put differently, the meaning of the numbers is to be understood by what is taken for granted, and what is part of the lifeworld (Schütz 1962 ). Franzosi shows how one can go about using qualitative and quantitative methods and data to address scientific questions analyzing violence in Italy at the time when fascism was rising (1919–1922). Aspers ( 2006 ) studied the meaning of fashion photographers. He uses an empirical phenomenological approach, and establishes meaning at the level of actors. In a second step this meaning, and the different ideal-typical photographers constructed as a result of participant observation and interviews, are tested using quantitative data from a database; in the first phase to verify the different ideal-types, in the second phase to use these types to establish new knowledge about the types. In both of these cases—and more examples can be found—authors move from qualitative data and try to keep the meaning established when using the quantitative data.

A second main result of our study is that a definition, and we provided one, offers a way for research to clarify, and even evaluate, what is done. Hence, our definition can guide researchers and students, informing them on how to think about concrete research problems they face, and to show what it means to get closer in a process in which new distinctions are made. The definition can also be used to evaluate the results, given that it is a standard of evaluation (cf. Hammersley 2007 ), to see whether new distinctions are made and whether this improves our understanding of what is researched, in addition to the evaluation of how the research was conducted. By making what is qualitative research explicit it becomes easier to communicate findings, and it is thereby much harder to fly under the radar with substandard research since there are standards of evaluation which make it easier to separate “good” from “not so good” qualitative research.

To conclude, our analysis, which ends with a definition of qualitative research can thus both address the “internal” issues of what is qualitative research, and the “external” critiques that make it harder to do qualitative research, to which both pressure from quantitative methods and general changes in society contribute.

Åkerström, Malin. 2013. Curiosity and serendipity in qualitative research. Qualitative Sociology Review 9 (2): 10–18.

Google Scholar  

Alford, Robert R. 1998. The craft of inquiry. Theories, methods, evidence . Oxford: Oxford University Press.

Alvesson, Mats, and Dan Kärreman. 2011. Qualitative research and theory development. Mystery as method . London: SAGE Publications.

Book   Google Scholar  

Aspers, Patrik. 2006. Markets in Fashion, A Phenomenological Approach. London Routledge.

Atkinson, Paul. 2005. Qualitative research. Unity and diversity. Forum: Qualitative Social Research 6 (3): 1–15.

Becker, Howard S. 1963. Outsiders. Studies in the sociology of deviance . New York: The Free Press.

Becker, Howard S. 1966. Whose side are we on? Social Problems 14 (3): 239–247.

Article   Google Scholar  

Becker, Howard S. 1970. Sociological work. Method and substance . New Brunswick: Transaction Books.

Becker, Howard S. 1996. The epistemology of qualitative research. In Ethnography and human development. Context and meaning in social inquiry , ed. Jessor Richard, Colby Anne, and Richard A. Shweder, 53–71. Chicago: University of Chicago Press.

Becker, Howard S. 1998. Tricks of the trade. How to think about your research while you're doing it . Chicago: University of Chicago Press.

Becker, Howard S. 2017. Evidence . Chigaco: University of Chicago Press.

Becker, Howard, Blanche Geer, Everett Hughes, and Anselm Strauss. 1961. Boys in White, student culture in medical school . New Brunswick: Transaction Publishers.

Berezin, Mabel. 2014. How do we know what we mean? Epistemological dilemmas in cultural sociology. Qualitative Sociology 37 (2): 141–151.

Best, Joel. 2004. Defining qualitative research. In Workshop on Scientific Foundations of Qualitative Research , eds . Charles, Ragin, Joanne, Nagel, and Patricia White, 53-54. http://www.nsf.gov/pubs/2004/nsf04219/nsf04219.pdf .

Biernacki, Richard. 2014. Humanist interpretation versus coding text samples. Qualitative Sociology 37 (2): 173–188.

Blumer, Herbert. 1969. Symbolic interactionism: Perspective and method . Berkeley: University of California Press.

Brady, Henry, David Collier, and Jason Seawright. 2004. Refocusing the discussion of methodology. In Rethinking social inquiry. Diverse tools, shared standards , ed. Brady Henry and Collier David, 3–22. Lanham: Rowman and Littlefield.

Brown, Allison P. 2010. Qualitative method and compromise in applied social research. Qualitative Research 10 (2): 229–248.

Charmaz, Kathy. 2006. Constructing grounded theory . London: Sage.

Corte, Ugo, and Katherine Irwin. 2017. “The Form and Flow of Teaching Ethnographic Knowledge: Hands-on Approaches for Learning Epistemology” Teaching Sociology 45(3): 209-219.

Creswell, John W. 2009. Research design. Qualitative, quantitative, and mixed method approaches . 3rd ed. Thousand Oaks: SAGE Publications.

Davidsson, David. 1988. 2001. The myth of the subjective. In Subjective, intersubjective, objective , ed. David Davidsson, 39–52. Oxford: Oxford University Press.

Denzin, Norman K. 1970. The research act: A theoretical introduction to Ssociological methods . Chicago: Aldine Publishing Company Publishers.

Denzin, Norman K., and Yvonna S. Lincoln. 2003. Introduction. The discipline and practice of qualitative research. In Collecting and interpreting qualitative materials , ed. Norman K. Denzin and Yvonna S. Lincoln, 1–45. Thousand Oaks: SAGE Publications.

Denzin, Norman K., and Yvonna S. Lincoln. 2005. Introduction. The discipline and practice of qualitative research. In The Sage handbook of qualitative research , ed. Norman K. Denzin and Yvonna S. Lincoln, 1–32. Thousand Oaks: SAGE Publications.

Emerson, Robert M., ed. 1988. Contemporary field research. A collection of readings . Prospect Heights: Waveland Press.

Emerson, Robert M., Rachel I. Fretz, and Linda L. Shaw. 1995. Writing ethnographic fieldnotes . Chicago: University of Chicago Press.

Esterberg, Kristin G. 2002. Qualitative methods in social research . Boston: McGraw-Hill.

Fine, Gary Alan. 1995. Review of “handbook of qualitative research.” Contemporary Sociology 24 (3): 416–418.

Fine, Gary Alan. 2003. “ Toward a Peopled Ethnography: Developing Theory from Group Life.” Ethnography . 4(1):41-60.

Fine, Gary Alan, and Black Hawk Hancock. 2017. The new ethnographer at work. Qualitative Research 17 (2): 260–268.

Fine, Gary Alan, and Timothy Hallett. 2014. Stranger and stranger: Creating theory through ethnographic distance and authority. Journal of Organizational Ethnography 3 (2): 188–203.

Flick, Uwe. 2002. Qualitative research. State of the art. Social Science Information 41 (1): 5–24.

Flick, Uwe. 2007. Designing qualitative research . London: SAGE Publications.

Frankfort-Nachmias, Chava, and David Nachmias. 1996. Research methods in the social sciences . 5th ed. London: Edward Arnold.

Franzosi, Roberto. 2010. Sociology, narrative, and the quality versus quantity debate (Goethe versus Newton): Can computer-assisted story grammars help us understand the rise of Italian fascism (1919- 1922)? Theory and Society 39 (6): 593–629.

Franzosi, Roberto. 2016. From method and measurement to narrative and number. International journal of social research methodology 19 (1): 137–141.

Gadamer, Hans-Georg. 1990. Wahrheit und Methode, Grundzüge einer philosophischen Hermeneutik . Band 1, Hermeneutik. Tübingen: J.C.B. Mohr.

Gans, Herbert. 1999. Participant Observation in an Age of “Ethnography”. Journal of Contemporary Ethnography 28 (5): 540–548.

Geertz, Clifford. 1973. The interpretation of cultures . New York: Basic Books.

Gilbert, Nigel. 2009. Researching social life . 3rd ed. London: SAGE Publications.

Glaeser, Andreas. 2014. Hermeneutic institutionalism: Towards a new synthesis. Qualitative Sociology 37: 207–241.

Glaser, Barney G., and Anselm L. Strauss. [1967] 2010. The discovery of grounded theory. Strategies for qualitative research. Hawthorne: Aldine.

Goertz, Gary, and James Mahoney. 2012. A tale of two cultures: Qualitative and quantitative research in the social sciences . Princeton: Princeton University Press.

Goffman, Erving. 1989. On fieldwork. Journal of Contemporary Ethnography 18 (2): 123–132.

Goodwin, Jeff, and Ruth Horowitz. 2002. Introduction. The methodological strengths and dilemmas of qualitative sociology. Qualitative Sociology 25 (1): 33–47.

Habermas, Jürgen. [1981] 1987. The theory of communicative action . Oxford: Polity Press.

Hammersley, Martyn. 2007. The issue of quality in qualitative research. International Journal of Research & Method in Education 30 (3): 287–305.

Hammersley, Martyn. 2013. What is qualitative research? Bloomsbury Publishing.

Hammersley, Martyn. 2018. What is ethnography? Can it survive should it? Ethnography and Education 13 (1): 1–17.

Hammersley, Martyn, and Paul Atkinson. 2007. Ethnography. Principles in practice . London: Tavistock Publications.

Heidegger, Martin. [1927] 2001. Sein und Zeit . Tübingen: Max Niemeyer Verlag.

Heidegger, Martin. 1988. 1923. Ontologie. Hermeneutik der Faktizität, Gesamtausgabe II. Abteilung: Vorlesungen 1919-1944, Band 63, Frankfurt am Main: Vittorio Klostermann.

Hempel, Carl G. 1966. Philosophy of the natural sciences . Upper Saddle River: Prentice Hall.

Hood, Jane C. 2006. Teaching against the text. The case of qualitative methods. Teaching Sociology 34 (3): 207–223.

James, William. 1907. 1955. Pragmatism . New York: Meredian Books.

Jovanović, Gordana. 2011. Toward a social history of qualitative research. History of the Human Sciences 24 (2): 1–27.

Kalof, Linda, Amy Dan, and Thomas Dietz. 2008. Essentials of social research . London: Open University Press.

Katz, Jack. 2015. Situational evidence: Strategies for causal reasoning from observational field notes. Sociological Methods & Research 44 (1): 108–144.

King, Gary, Robert O. Keohane, S. Sidney, and S. Verba. 1994. Designing social inquiry. In Scientific inference in qualitative research . Princeton: Princeton University Press.

Chapter   Google Scholar  

Lamont, Michelle. 2004. Evaluating qualitative research: Some empirical findings and an agenda. In Report from workshop on interdisciplinary standards for systematic qualitative research , ed. M. Lamont and P. White, 91–95. Washington, DC: National Science Foundation.

Lamont, Michèle, and Ann Swidler. 2014. Methodological pluralism and the possibilities and limits of interviewing. Qualitative Sociology 37 (2): 153–171.

Lazarsfeld, Paul, and Alan Barton. 1982. Some functions of qualitative analysis in social research. In The varied sociology of Paul Lazarsfeld , ed. Patricia Kendall, 239–285. New York: Columbia University Press.

Lichterman, Paul, and Isaac Reed I (2014), Theory and Contrastive Explanation in Ethnography. Sociological methods and research. Prepublished 27 October 2014; https://doi.org/10.1177/0049124114554458 .

Lofland, John, and Lyn Lofland. 1995. Analyzing social settings. A guide to qualitative observation and analysis . 3rd ed. Belmont: Wadsworth.

Lofland, John, David A. Snow, Leon Anderson, and Lyn H. Lofland. 2006. Analyzing social settings. A guide to qualitative observation and analysis . 4th ed. Belmont: Wadsworth/Thomson Learning.

Long, Adrew F., and Mary Godfrey. 2004. An evaluation tool to assess the quality of qualitative research studies. International Journal of Social Research Methodology 7 (2): 181–196.

Lundberg, George. 1951. Social research: A study in methods of gathering data . New York: Longmans, Green and Co..

Malinowski, Bronislaw. 1922. Argonauts of the Western Pacific: An account of native Enterprise and adventure in the archipelagoes of Melanesian New Guinea . London: Routledge.

Manicas, Peter. 2006. A realist philosophy of science: Explanation and understanding . Cambridge: Cambridge University Press.

Marchel, Carol, and Stephanie Owens. 2007. Qualitative research in psychology. Could William James get a job? History of Psychology 10 (4): 301–324.

McIntyre, Lisa J. 2005. Need to know. Social science research methods . Boston: McGraw-Hill.

Merton, Robert K., and Elinor Barber. 2004. The travels and adventures of serendipity. A Study in Sociological Semantics and the Sociology of Science . Princeton: Princeton University Press.

Mannay, Dawn, and Melanie Morgan. 2015. Doing ethnography or applying a qualitative technique? Reflections from the ‘waiting field‘. Qualitative Research 15 (2): 166–182.

Neuman, Lawrence W. 2007. Basics of social research. Qualitative and quantitative approaches . 2nd ed. Boston: Pearson Education.

Ragin, Charles C. 1994. Constructing social research. The unity and diversity of method . Thousand Oaks: Pine Forge Press.

Ragin, Charles C. 2004. Introduction to session 1: Defining qualitative research. In Workshop on Scientific Foundations of Qualitative Research , 22, ed. Charles C. Ragin, Joane Nagel, Patricia White. http://www.nsf.gov/pubs/2004/nsf04219/nsf04219.pdf

Rawls, Anne. 2018. The Wartime narrative in US sociology, 1940–7: Stigmatizing qualitative sociology in the name of ‘science,’ European Journal of Social Theory (Online first).

Schütz, Alfred. 1962. Collected papers I: The problem of social reality . The Hague: Nijhoff.

Seiffert, Helmut. 1992. Einführung in die Hermeneutik . Tübingen: Franke.

Silverman, David. 2005. Doing qualitative research. A practical handbook . 2nd ed. London: SAGE Publications.

Silverman, David. 2009. A very short, fairly interesting and reasonably cheap book about qualitative research . London: SAGE Publications.

Silverman, David. 2013. What counts as qualitative research? Some cautionary comments. Qualitative Sociology Review 9 (2): 48–55.

Small, Mario L. 2009. “How many cases do I need?” on science and the logic of case selection in field-based research. Ethnography 10 (1): 5–38.

Small, Mario L 2008. Lost in translation: How not to make qualitative research more scientific. In Workshop on interdisciplinary standards for systematic qualitative research, ed in Michelle Lamont, and Patricia White, 165–171. Washington, DC: National Science Foundation.

Snow, David A., and Leon Anderson. 1993. Down on their luck: A study of homeless street people . Berkeley: University of California Press.

Snow, David A., and Calvin Morrill. 1995. New ethnographies: Review symposium: A revolutionary handbook or a handbook for revolution? Journal of Contemporary Ethnography 24 (3): 341–349.

Strauss, Anselm L. 2003. Qualitative analysis for social scientists . 14th ed. Chicago: Cambridge University Press.

Strauss, Anselm L., and Juliette M. Corbin. 1998. Basics of qualitative research. Techniques and procedures for developing grounded theory . 2nd ed. Thousand Oaks: Sage Publications.

Swedberg, Richard. 2017. Theorizing in sociological research: A new perspective, a new departure? Annual Review of Sociology 43: 189–206.

Swedberg, Richard. 1990. The new 'Battle of Methods'. Challenge January–February 3 (1): 33–38.

Timmermans, Stefan, and Iddo Tavory. 2012. Theory construction in qualitative research: From grounded theory to abductive analysis. Sociological Theory 30 (3): 167–186.

Trier-Bieniek, Adrienne. 2012. Framing the telephone interview as a participant-centred tool for qualitative research. A methodological discussion. Qualitative Research 12 (6): 630–644.

Valsiner, Jaan. 2000. Data as representations. Contextualizing qualitative and quantitative research strategies. Social Science Information 39 (1): 99–113.

Weber, Max. 1904. 1949. Objectivity’ in social Science and social policy. Ed. Edward A. Shils and Henry A. Finch, 49–112. New York: The Free Press.

Download references

Acknowledgements

Financial Support for this research is given by the European Research Council, CEV (263699). The authors are grateful to Susann Krieglsteiner for assistance in collecting the data. The paper has benefitted from the many useful comments by the three reviewers and the editor, comments by members of the Uppsala Laboratory of Economic Sociology, as well as Jukka Gronow, Sebastian Kohl, Marcin Serafin, Richard Swedberg, Anders Vassenden and Turid Rødne.

Author information

Authors and affiliations.

Department of Sociology, Uppsala University, Uppsala, Sweden

Patrik Aspers

Seminar for Sociology, Universität St. Gallen, St. Gallen, Switzerland

Department of Media and Social Sciences, University of Stavanger, Stavanger, Norway

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Patrik Aspers .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Aspers, P., Corte, U. What is Qualitative in Qualitative Research. Qual Sociol 42 , 139–160 (2019). https://doi.org/10.1007/s11133-019-9413-7

Download citation

Published : 27 February 2019

Issue Date : 01 June 2019

DOI : https://doi.org/10.1007/s11133-019-9413-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Qualitative research
  • Epistemology
  • Philosophy of science
  • Phenomenology
  • Find a journal
  • Publish with us
  • Track your research
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Qualitative Research – Methods, Analysis Types and Guide

Qualitative Research – Methods, Analysis Types and Guide

Table of Contents

Qualitative Research

Qualitative Research

Qualitative research is a type of research methodology that focuses on exploring and understanding people’s beliefs, attitudes, behaviors, and experiences through the collection and analysis of non-numerical data. It seeks to answer research questions through the examination of subjective data, such as interviews, focus groups, observations, and textual analysis.

Qualitative research aims to uncover the meaning and significance of social phenomena, and it typically involves a more flexible and iterative approach to data collection and analysis compared to quantitative research. Qualitative research is often used in fields such as sociology, anthropology, psychology, and education.

Qualitative Research Methods

Types of Qualitative Research

Qualitative Research Methods are as follows:

One-to-One Interview

This method involves conducting an interview with a single participant to gain a detailed understanding of their experiences, attitudes, and beliefs. One-to-one interviews can be conducted in-person, over the phone, or through video conferencing. The interviewer typically uses open-ended questions to encourage the participant to share their thoughts and feelings. One-to-one interviews are useful for gaining detailed insights into individual experiences.

Focus Groups

This method involves bringing together a group of people to discuss a specific topic in a structured setting. The focus group is led by a moderator who guides the discussion and encourages participants to share their thoughts and opinions. Focus groups are useful for generating ideas and insights, exploring social norms and attitudes, and understanding group dynamics.

Ethnographic Studies

This method involves immersing oneself in a culture or community to gain a deep understanding of its norms, beliefs, and practices. Ethnographic studies typically involve long-term fieldwork and observation, as well as interviews and document analysis. Ethnographic studies are useful for understanding the cultural context of social phenomena and for gaining a holistic understanding of complex social processes.

Text Analysis

This method involves analyzing written or spoken language to identify patterns and themes. Text analysis can be quantitative or qualitative. Qualitative text analysis involves close reading and interpretation of texts to identify recurring themes, concepts, and patterns. Text analysis is useful for understanding media messages, public discourse, and cultural trends.

This method involves an in-depth examination of a single person, group, or event to gain an understanding of complex phenomena. Case studies typically involve a combination of data collection methods, such as interviews, observations, and document analysis, to provide a comprehensive understanding of the case. Case studies are useful for exploring unique or rare cases, and for generating hypotheses for further research.

Process of Observation

This method involves systematically observing and recording behaviors and interactions in natural settings. The observer may take notes, use audio or video recordings, or use other methods to document what they see. Process of observation is useful for understanding social interactions, cultural practices, and the context in which behaviors occur.

Record Keeping

This method involves keeping detailed records of observations, interviews, and other data collected during the research process. Record keeping is essential for ensuring the accuracy and reliability of the data, and for providing a basis for analysis and interpretation.

This method involves collecting data from a large sample of participants through a structured questionnaire. Surveys can be conducted in person, over the phone, through mail, or online. Surveys are useful for collecting data on attitudes, beliefs, and behaviors, and for identifying patterns and trends in a population.

Qualitative data analysis is a process of turning unstructured data into meaningful insights. It involves extracting and organizing information from sources like interviews, focus groups, and surveys. The goal is to understand people’s attitudes, behaviors, and motivations

Qualitative Research Analysis Methods

Qualitative Research analysis methods involve a systematic approach to interpreting and making sense of the data collected in qualitative research. Here are some common qualitative data analysis methods:

Thematic Analysis

This method involves identifying patterns or themes in the data that are relevant to the research question. The researcher reviews the data, identifies keywords or phrases, and groups them into categories or themes. Thematic analysis is useful for identifying patterns across multiple data sources and for generating new insights into the research topic.

Content Analysis

This method involves analyzing the content of written or spoken language to identify key themes or concepts. Content analysis can be quantitative or qualitative. Qualitative content analysis involves close reading and interpretation of texts to identify recurring themes, concepts, and patterns. Content analysis is useful for identifying patterns in media messages, public discourse, and cultural trends.

Discourse Analysis

This method involves analyzing language to understand how it constructs meaning and shapes social interactions. Discourse analysis can involve a variety of methods, such as conversation analysis, critical discourse analysis, and narrative analysis. Discourse analysis is useful for understanding how language shapes social interactions, cultural norms, and power relationships.

Grounded Theory Analysis

This method involves developing a theory or explanation based on the data collected. Grounded theory analysis starts with the data and uses an iterative process of coding and analysis to identify patterns and themes in the data. The theory or explanation that emerges is grounded in the data, rather than preconceived hypotheses. Grounded theory analysis is useful for understanding complex social phenomena and for generating new theoretical insights.

Narrative Analysis

This method involves analyzing the stories or narratives that participants share to gain insights into their experiences, attitudes, and beliefs. Narrative analysis can involve a variety of methods, such as structural analysis, thematic analysis, and discourse analysis. Narrative analysis is useful for understanding how individuals construct their identities, make sense of their experiences, and communicate their values and beliefs.

Phenomenological Analysis

This method involves analyzing how individuals make sense of their experiences and the meanings they attach to them. Phenomenological analysis typically involves in-depth interviews with participants to explore their experiences in detail. Phenomenological analysis is useful for understanding subjective experiences and for developing a rich understanding of human consciousness.

Comparative Analysis

This method involves comparing and contrasting data across different cases or groups to identify similarities and differences. Comparative analysis can be used to identify patterns or themes that are common across multiple cases, as well as to identify unique or distinctive features of individual cases. Comparative analysis is useful for understanding how social phenomena vary across different contexts and groups.

Applications of Qualitative Research

Qualitative research has many applications across different fields and industries. Here are some examples of how qualitative research is used:

  • Market Research: Qualitative research is often used in market research to understand consumer attitudes, behaviors, and preferences. Researchers conduct focus groups and one-on-one interviews with consumers to gather insights into their experiences and perceptions of products and services.
  • Health Care: Qualitative research is used in health care to explore patient experiences and perspectives on health and illness. Researchers conduct in-depth interviews with patients and their families to gather information on their experiences with different health care providers and treatments.
  • Education: Qualitative research is used in education to understand student experiences and to develop effective teaching strategies. Researchers conduct classroom observations and interviews with students and teachers to gather insights into classroom dynamics and instructional practices.
  • Social Work : Qualitative research is used in social work to explore social problems and to develop interventions to address them. Researchers conduct in-depth interviews with individuals and families to understand their experiences with poverty, discrimination, and other social problems.
  • Anthropology : Qualitative research is used in anthropology to understand different cultures and societies. Researchers conduct ethnographic studies and observe and interview members of different cultural groups to gain insights into their beliefs, practices, and social structures.
  • Psychology : Qualitative research is used in psychology to understand human behavior and mental processes. Researchers conduct in-depth interviews with individuals to explore their thoughts, feelings, and experiences.
  • Public Policy : Qualitative research is used in public policy to explore public attitudes and to inform policy decisions. Researchers conduct focus groups and one-on-one interviews with members of the public to gather insights into their perspectives on different policy issues.

How to Conduct Qualitative Research

Here are some general steps for conducting qualitative research:

  • Identify your research question: Qualitative research starts with a research question or set of questions that you want to explore. This question should be focused and specific, but also broad enough to allow for exploration and discovery.
  • Select your research design: There are different types of qualitative research designs, including ethnography, case study, grounded theory, and phenomenology. You should select a design that aligns with your research question and that will allow you to gather the data you need to answer your research question.
  • Recruit participants: Once you have your research question and design, you need to recruit participants. The number of participants you need will depend on your research design and the scope of your research. You can recruit participants through advertisements, social media, or through personal networks.
  • Collect data: There are different methods for collecting qualitative data, including interviews, focus groups, observation, and document analysis. You should select the method or methods that align with your research design and that will allow you to gather the data you need to answer your research question.
  • Analyze data: Once you have collected your data, you need to analyze it. This involves reviewing your data, identifying patterns and themes, and developing codes to organize your data. You can use different software programs to help you analyze your data, or you can do it manually.
  • Interpret data: Once you have analyzed your data, you need to interpret it. This involves making sense of the patterns and themes you have identified, and developing insights and conclusions that answer your research question. You should be guided by your research question and use your data to support your conclusions.
  • Communicate results: Once you have interpreted your data, you need to communicate your results. This can be done through academic papers, presentations, or reports. You should be clear and concise in your communication, and use examples and quotes from your data to support your findings.

Examples of Qualitative Research

Here are some real-time examples of qualitative research:

  • Customer Feedback: A company may conduct qualitative research to understand the feedback and experiences of its customers. This may involve conducting focus groups or one-on-one interviews with customers to gather insights into their attitudes, behaviors, and preferences.
  • Healthcare : A healthcare provider may conduct qualitative research to explore patient experiences and perspectives on health and illness. This may involve conducting in-depth interviews with patients and their families to gather information on their experiences with different health care providers and treatments.
  • Education : An educational institution may conduct qualitative research to understand student experiences and to develop effective teaching strategies. This may involve conducting classroom observations and interviews with students and teachers to gather insights into classroom dynamics and instructional practices.
  • Social Work: A social worker may conduct qualitative research to explore social problems and to develop interventions to address them. This may involve conducting in-depth interviews with individuals and families to understand their experiences with poverty, discrimination, and other social problems.
  • Anthropology : An anthropologist may conduct qualitative research to understand different cultures and societies. This may involve conducting ethnographic studies and observing and interviewing members of different cultural groups to gain insights into their beliefs, practices, and social structures.
  • Psychology : A psychologist may conduct qualitative research to understand human behavior and mental processes. This may involve conducting in-depth interviews with individuals to explore their thoughts, feelings, and experiences.
  • Public Policy: A government agency or non-profit organization may conduct qualitative research to explore public attitudes and to inform policy decisions. This may involve conducting focus groups and one-on-one interviews with members of the public to gather insights into their perspectives on different policy issues.

Purpose of Qualitative Research

The purpose of qualitative research is to explore and understand the subjective experiences, behaviors, and perspectives of individuals or groups in a particular context. Unlike quantitative research, which focuses on numerical data and statistical analysis, qualitative research aims to provide in-depth, descriptive information that can help researchers develop insights and theories about complex social phenomena.

Qualitative research can serve multiple purposes, including:

  • Exploring new or emerging phenomena : Qualitative research can be useful for exploring new or emerging phenomena, such as new technologies or social trends. This type of research can help researchers develop a deeper understanding of these phenomena and identify potential areas for further study.
  • Understanding complex social phenomena : Qualitative research can be useful for exploring complex social phenomena, such as cultural beliefs, social norms, or political processes. This type of research can help researchers develop a more nuanced understanding of these phenomena and identify factors that may influence them.
  • Generating new theories or hypotheses: Qualitative research can be useful for generating new theories or hypotheses about social phenomena. By gathering rich, detailed data about individuals’ experiences and perspectives, researchers can develop insights that may challenge existing theories or lead to new lines of inquiry.
  • Providing context for quantitative data: Qualitative research can be useful for providing context for quantitative data. By gathering qualitative data alongside quantitative data, researchers can develop a more complete understanding of complex social phenomena and identify potential explanations for quantitative findings.

When to use Qualitative Research

Here are some situations where qualitative research may be appropriate:

  • Exploring a new area: If little is known about a particular topic, qualitative research can help to identify key issues, generate hypotheses, and develop new theories.
  • Understanding complex phenomena: Qualitative research can be used to investigate complex social, cultural, or organizational phenomena that are difficult to measure quantitatively.
  • Investigating subjective experiences: Qualitative research is particularly useful for investigating the subjective experiences of individuals or groups, such as their attitudes, beliefs, values, or emotions.
  • Conducting formative research: Qualitative research can be used in the early stages of a research project to develop research questions, identify potential research participants, and refine research methods.
  • Evaluating interventions or programs: Qualitative research can be used to evaluate the effectiveness of interventions or programs by collecting data on participants’ experiences, attitudes, and behaviors.

Characteristics of Qualitative Research

Qualitative research is characterized by several key features, including:

  • Focus on subjective experience: Qualitative research is concerned with understanding the subjective experiences, beliefs, and perspectives of individuals or groups in a particular context. Researchers aim to explore the meanings that people attach to their experiences and to understand the social and cultural factors that shape these meanings.
  • Use of open-ended questions: Qualitative research relies on open-ended questions that allow participants to provide detailed, in-depth responses. Researchers seek to elicit rich, descriptive data that can provide insights into participants’ experiences and perspectives.
  • Sampling-based on purpose and diversity: Qualitative research often involves purposive sampling, in which participants are selected based on specific criteria related to the research question. Researchers may also seek to include participants with diverse experiences and perspectives to capture a range of viewpoints.
  • Data collection through multiple methods: Qualitative research typically involves the use of multiple data collection methods, such as in-depth interviews, focus groups, and observation. This allows researchers to gather rich, detailed data from multiple sources, which can provide a more complete picture of participants’ experiences and perspectives.
  • Inductive data analysis: Qualitative research relies on inductive data analysis, in which researchers develop theories and insights based on the data rather than testing pre-existing hypotheses. Researchers use coding and thematic analysis to identify patterns and themes in the data and to develop theories and explanations based on these patterns.
  • Emphasis on researcher reflexivity: Qualitative research recognizes the importance of the researcher’s role in shaping the research process and outcomes. Researchers are encouraged to reflect on their own biases and assumptions and to be transparent about their role in the research process.

Advantages of Qualitative Research

Qualitative research offers several advantages over other research methods, including:

  • Depth and detail: Qualitative research allows researchers to gather rich, detailed data that provides a deeper understanding of complex social phenomena. Through in-depth interviews, focus groups, and observation, researchers can gather detailed information about participants’ experiences and perspectives that may be missed by other research methods.
  • Flexibility : Qualitative research is a flexible approach that allows researchers to adapt their methods to the research question and context. Researchers can adjust their research methods in real-time to gather more information or explore unexpected findings.
  • Contextual understanding: Qualitative research is well-suited to exploring the social and cultural context in which individuals or groups are situated. Researchers can gather information about cultural norms, social structures, and historical events that may influence participants’ experiences and perspectives.
  • Participant perspective : Qualitative research prioritizes the perspective of participants, allowing researchers to explore subjective experiences and understand the meanings that participants attach to their experiences.
  • Theory development: Qualitative research can contribute to the development of new theories and insights about complex social phenomena. By gathering rich, detailed data and using inductive data analysis, researchers can develop new theories and explanations that may challenge existing understandings.
  • Validity : Qualitative research can offer high validity by using multiple data collection methods, purposive and diverse sampling, and researcher reflexivity. This can help ensure that findings are credible and trustworthy.

Limitations of Qualitative Research

Qualitative research also has some limitations, including:

  • Subjectivity : Qualitative research relies on the subjective interpretation of researchers, which can introduce bias into the research process. The researcher’s perspective, beliefs, and experiences can influence the way data is collected, analyzed, and interpreted.
  • Limited generalizability: Qualitative research typically involves small, purposive samples that may not be representative of larger populations. This limits the generalizability of findings to other contexts or populations.
  • Time-consuming: Qualitative research can be a time-consuming process, requiring significant resources for data collection, analysis, and interpretation.
  • Resource-intensive: Qualitative research may require more resources than other research methods, including specialized training for researchers, specialized software for data analysis, and transcription services.
  • Limited reliability: Qualitative research may be less reliable than quantitative research, as it relies on the subjective interpretation of researchers. This can make it difficult to replicate findings or compare results across different studies.
  • Ethics and confidentiality: Qualitative research involves collecting sensitive information from participants, which raises ethical concerns about confidentiality and informed consent. Researchers must take care to protect the privacy and confidentiality of participants and obtain informed consent.

Also see Research Methods

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

what is conclusion in qualitative research

9 methodologies for a successful qualitative research assignment

Qualitative research is important in the educational and scientific domains. It enables a deeper understanding of phenomena, experiences, and context. Many researchers employ such research activities in the fields of history, sociology, and anthropology. For such researchers, learning quality analysis insights is crucial. This way, they can perform well throughout their research journey. Writing a qualitative research assignment is one such way to practice qualitative interpretations. When students address various qualitative questions in these projects, they become efficient in conducting these activities at a higher level, such as for a master’s or Ph.D. thesis.

The FormPlus highlights why researchers prefer qualitative research over quantitative research. It is faster, scientific, objective, focused, and acceptable. Researchers who don’t know what to expect from the research outcomes usually choose qualitative research. In this guide, we will discuss the top methodologies that students can employ while writing their qualitative research assignments. This way, you can write an appealing document that perfectly demonstrates your qualitative research skills.

However, being stressed with academic and daily life commitments, if you find it challenging to manage time exclusively for such projects, availing of assignment writing services can make it manageable. Instead of doing anything wrong in the hustle, get it done by the professionals specifically working to handle these academic write-ups. Now, let’s define quality research before we discuss the actual topic.

What is meant by qualitative research?

Quality research is a market research method that gathers data from conversational and open-ended communication. In simple words, it is about what people think and why they think so. It relates to the nature or standard of something rather than dealing with its quantity. Such researchers collect nonnumerical data to understand opinions, concepts, and ideas.

How do you write a qualitative research assignment? Top 9 methodologies

Writing an assignment requires your command of various tasks. Qualitative research assignment design involves research, writing, structuring, and providing citations of the resources used. Assignment writing plays a crucial role in upgrading your grades.

So, you must make it accurate and authentic. Write it with the utmost care without skipping any important aspects. Sometimes, it can be hard, but it becomes easy if you correctly use effective methodologies. This is why we have brought together some of the common methodologies you can use to write your qualitative research assignments.

1. Interviews

A qualitative interview is mostly used in projects that involve market research. In this study personal interaction is required to collect in-depth information of the participants. In qualitative research for assignment, consider the interview as a personal form of research agenda rather than a focused group study. A qualitative interview requires careful planning so that you can gather meaningful data.

Here are the simple steps to consider for its implementation in a qualitative research assignment:

  • Define research objectives.
  • Identify the target population.
  • Obtain informed consent of participants.
  • Make an interview guideline.
  • Select a suitable location.
  • Conduct the interview.
  • Show respect for participant’s perspectives.
  • Analyse the data.

2. Observation

In qualitative observation, the researcher gathers data from five senses: sight, hearing, touch, smell, and taste. It is a subject approach that depends on the sensory organ of the researcher. This method allows you to better understand the culture, process, and people under study. Some of its characteristics to consider for writing a qualitative research assignment include,

  • It is a naturalistic inquiry of the participants in a natural environment.
  • This approach is subjective and depends on the researcher’s observation.
  • It does not seek a definite answer to a query.
  • The researcher can recognise their own biases when compiling findings.

3. Questionnaires

In this type of survey, the researcher asks open-ended questions to participants. This way, they price the long written or typed document. In writing qualitative research assignments, these questions aim to reveal the participants’ narratives and experiences. Once you know what type of information you need, you can start curating your questionnaire form. The questions must be specific and clear enough that the participants can comprehend them.

Below are the main points that must be considered when creating qualitative research questionnaires.

  • Avoid jargon and ambiguity in the questions.
  • Each question should contribute to the research objectives.
  • Use simple language.
  • The questions should be neutral and unbiased.
  • Be precise, as the complex questions can overwhelm the respondents.
  • Always conduct a pilot test.
  • Put yourself in the respondent’s shoes while asking questions.

4. Case Study

A case study is a detailed analysis of a person, place, thing, organisation, or phenomenon. This method is appropriate when you want to gain a contextual, concrete, and in-depth understanding of the real-world problem for writing your qualitative research assignment. This method is especially helpful when you need more time to conduct large-scale research activities.

The four crucial steps below can be followed up with this methodology.

  • Select a case that has the potential to provide new and unexpected insights into the subject.
  • Make a theoretical framework.
  • Collect your data from various primary and secondary resources.
  • Describe and analyse the case to provide a clear picture of the subject.

5. Focus Groups

Focused group research has some interesting properties. In this method, a planned interview is conducted within a small group. For this purpose, some of the participants are sampled from the study population to record data for writing a qualitative research assignment. Typically, a focused group has features like,

  • At least four to ten participants must meet for up to two hours.
  • There must be a facilitator who can guide the discussion by asking open-ended questions.
  • The emphasis must be put on the group discussion rather than the discussion of the group members with the facilitator.
  • The discussion should be recorded and transcribed by the researchers.

6. Ethnographic Research

It is the most in-depth research method that involves studying people in their natural environment. It requires the researcher to adopt the target audience environment. The environment can be anything from an organisation to a city or any remote location.

However, the geographical constraints can be a problem in this study. For students who are writing their qualitative research assignment, some of the features of ethnographic research to write in their document include,

  • The researcher can get a more realistic picture of the study.
  • It uncovers extremely valuable insights.
  • Provides accurate predictions.
  • You can extend the observation to create more in-depth data.
  • You can interact with people within a particular context.

7. Record Keeping

This method is similar to going to the library to collect data from books. You consult various relayed books, note the important points, and take note of the referencing. So, the researcher uses already existing data rather than introducing new things in the field.

Later on, this data can be used to conduct new research. Yet, when faced with the vast resources available in your institution’s library, seeking assistance from UK-based assignment writing services is an excellent solution if you need help pinpointing the most relevant information for your topic. Proficient in data gathering and adept at structuring qualitative research assignments, these professionals can significantly elevate your academic results.

This method is mostly used by companies to understand a group of customers’ behaviour, characteristics, and motivation. It allows respondents to ask in-depth questions about their experience. In a business market, it helps you understand how your customers make decisions. The intent is to understand them at their level and make related changes in your setup. The researcher must ask generic and precise questions that have a clear purpose.

Consider the below examples of qualitative survey questions. It can be useful in recording data and writing qualitative research assignments.

  • Why did you buy this skin care product?
  • What is the overall narrative of this brand?
  • How do you feel after buying this product?
  • What sets this brand apart from others?
  • How will this product fulfil your needs?
  • What are the things that you expect from this brand to grant you?

9. Action Research

This method involves collaboration and empowerment of the participants. It is mostly appropriate for marginalised groups where there is no flexibility.

The primary characteristics of the action research that can be quoted in your qualitative research assignment include,

  • It is action-oriented, and participants are actively involved in the research.
  • There is a collaborative process between participants and researchers.
  • The nature of action research is flexible to the changing situation.

However, the survey also accompanies some of the limitations, including,

  • The researcher can misinterpret the open-ended questions.
  • The data ownership between the researcher and participants needs to be negotiated.
  • The ethical considerations must be kept.
  • It is not considered a scientific method as it is fluid in data collection. Consequently, it may not attract the finding.

What is the difference between quantitative and qualitative research?

Both research types share the common aim of knowledge acquisition. In quantitative research, the use of numbers and objective measures is used. It seeks answers to questions like when and where.

On the other hand, in qualitative research, the researcher is concerned with subjective phenomena. Such data can’t be numerically measured. For example, you might conduct a survey to analyse how different people experience grief.

What are the 4 types of qualitative research?

There are various types of qualitative research. It may include,

● Phenomenological studies:

It examines the human experience via description provided by the people involved. These are the lived experiences of the people. It is usually used in research areas where little knowledge is known.

● Ethnographic studies:

It involves the analysis of data about cultural groups. In such analysis, the researcher mostly lives with different communities and becomes part of their culture to provide solid interpretations.

● Grounded theory studies:

In this qualitative approach, the researcher collects and analyses the data. Later on, a theory is developed that is grounded in the data. It used both inductive and deductive approaches for theory development.

● Historical studies:

It is concerned with the location, identification, evaluation, and synthesis of data from the past. These researchers are not concerned with discovering past events but with relating these events to the present happenings.

The Research Gate provides a flow chart illustrating various qualitative research methods.

What are The 7 characteristics of qualitative research?

The following are some of the distinct features of qualitative research. You can write about them in your qualitative research assignment, as they are collected from reliable sources.

  • It can even capture the changing attitude within the target group.
  • It is beyond the limitations associated with quantitative research
  • It explains something that numbers alone can’t describe.
  • It is a flexible approach to improve the outcomes.
  • A researcher is not supposed to become more speculative about the results.
  • This approach is more targeted.
  • It keeps the cost of data collection down.

What are the advantages and disadvantages of qualitative research?

The pros of qualitative research can’t be denied. However, some cons are also associated with this research.

  • Explore attitudes and behaviours in depth.
  • It encourages discussions for better results.
  • Generate descriptive data that can formulate new theories.
  • The small sample size can be a problem.
  • Bias in the sample collection.
  • Lack of privacy if you are covering a sensitive topic.

Qualitative research assignment examples

The Afe Babalola University ePortal provides an example of a qualitative assignment. Here is the description of quality questions and related answers. You can get an idea about how to handle your quality research assignment project with this sample.

The questions asked in the paper are displayed below.

The Slide Team presents a template for further compressing other details, such as the qualitative research assignment template. You can use it to make your presentation look professional.

Writing a qualitative research assignment is crucial, especially if you want to engage in research activities for your master’s thesis. Most researchers choose this method because of the associated credibility and reliability of the results. In the above guide, we have discussed some of the prominent features of this method. All of the given data can help you in writing your assignments. We have discussed the benefits of each methodology and a brief account of how you can carry it.

However, even after going through this whole guideline, if the concepts of the Qualitative Research methods assignment seem ambiguous and you think you can’t write a good project, then ask professional to “ write my assignment .” These experts can consult the best sources for the data collection of your project. Consequently, they will deliver you the winning document that can stand out among other write-ups.

This paper is in the following e-collection/theme issue:

Published on 28.3.2024 in Vol 26 (2024)

Augmenting K-Means Clustering With Qualitative Data to Discover the Engagement Patterns of Older Adults With Multimorbidity When Using Digital Health Technologies: Proof-of-Concept Trial

Authors of this article:

Author Orcid Image

Original Paper

  • Yiyang Sheng 1 , MSc   ; 
  • Raymond Bond 2 , PhD   ; 
  • Rajesh Jaiswal 3 , PhD   ; 
  • John Dinsmore 4 , PhD   ; 
  • Julie Doyle 1 , PhD  

1 NetwellCASALA, Dundalk Institution of Technology, Dundalk, Ireland

2 School of Computing, Ulster University, Jordanstown, United Kingdom

3 School of Enterprise Computing and Digital Transformation, Technological University Dublin, Dublin, Ireland

4 Trinity Centre for Practice and Healthcare Innovation, School of Nursing and Midwifery, Trinity College Dublin, Dublin, Ireland

Corresponding Author:

Yiyang Sheng, MSc

NetwellCASALA

Dundalk Institution of Technology

Dublin Road, PJ Carrolls Building, Dundalk Institute of Technology

Co.Louth, Ireland

Dundalk, A91 K584

Phone: 353 894308214

Email: [email protected]

Background: Multiple chronic conditions (multimorbidity) are becoming more prevalent among aging populations. Digital health technologies have the potential to assist in the self-management of multimorbidity, improving the awareness and monitoring of health and well-being, supporting a better understanding of the disease, and encouraging behavior change.

Objective: The aim of this study was to analyze how 60 older adults (mean age 74, SD 6.4; range 65-92 years) with multimorbidity engaged with digital symptom and well-being monitoring when using a digital health platform over a period of approximately 12 months.

Methods: Principal component analysis and clustering analysis were used to group participants based on their levels of engagement, and the data analysis focused on characteristics (eg, age, sex, and chronic health conditions), engagement outcomes, and symptom outcomes of the different clusters that were discovered.

Results: Three clusters were identified: the typical user group, the least engaged user group, and the highly engaged user group. Our findings show that age, sex, and the types of chronic health conditions do not influence engagement. The 3 primary factors influencing engagement were whether the same device was used to submit different health and well-being parameters, the number of manual operations required to take a reading, and the daily routine of the participants. The findings also indicate that higher levels of engagement may improve the participants’ outcomes (eg, reduce symptom exacerbation and increase physical activity).

Conclusions: The findings indicate potential factors that influence older adult engagement with digital health technologies for home-based multimorbidity self-management. The least engaged user groups showed decreased health and well-being outcomes related to multimorbidity self-management. Addressing the factors highlighted in this study in the design and implementation of home-based digital health technologies may improve symptom management and physical activity outcomes for older adults self-managing multimorbidity.

Introduction

According to the United Nations, the number of people aged ≥65 years is growing faster than all other age groups [ 1 ]. The worldwide population of people aged ≥65 years will increase from approximately 550 million in 2000 to 973 million in 2030 [ 2 ]. Furthermore, by 2050, approximately 16% of the world’s population will be aged >65 years, whereas 426 million people will be aged >80 years [ 1 ]. Living longer is a great benefit to today’s society. However, this comes with several challenges. Aging can be associated with many health problems, including multimorbidity (ie, the presence of ≥2 chronic conditions) [ 3 ]. The prevalence rate of multimorbidity among older adults is estimated to be between 55% and 98%, and the factors associated with multimorbidity are older age, female sex, and low socioeconomic status [ 4 ]. In the United States, almost 75% of older adults have multimorbidity [ 5 ], and it was estimated that 50 million people in the European Union were living with multimorbidity in 2015 [ 6 ]. Likewise, the prevalence rate of multimorbidity is 69.3% among older adults in China [ 5 ].

Home-based self-management for chronic health conditions involves actions and behaviors that protect and promote good health care practices comprising the management of physical, emotional, and social care [ 7 ]. Engaging in self-management can help older adults understand and manage their health conditions, prevent illness, and promote wellness [ 7 , 8 ]. However, self-management for older adults with multimorbidity is a long-term, complex, and challenging mission [ 9 , 10 ]. There are numerous self-care tasks to engage in, which can be very complicated, especially for people with multiple chronic health conditions. Furthermore, the severity of the disease can negatively impact a person’s ability to engage in self-management [ 10 ].

Digital home-based health technologies have the potential to support better engagement with self-management interventions, such as the monitoring of symptom and well-being parameters as well as medication adherence [ 10 , 11 ]. Such technologies can help older adults understand their disease or diseases, respond to changes, and communicate with health care providers [ 12 - 14 ]. Furthermore, digital health technologies can be tailored to individual motivations and personal needs [ 13 ], which can improve sustained use [ 15 ] and result in people feeling supported [ 16 ]. Digital self-management can also create better opportunities for adoption and adherence in the long term compared with paper booklet self-management [ 16 ]. Moreover, digital health technologies, such as small wearable monitoring devices, can increase the frequency of symptom monitoring for patients with minimal stress compared with symptom monitoring with manual notifications [ 17 ].

A large body of research implements data mining and machine learning algorithms using data acquired from home-based health care data sets. Data mining techniques, such as data visualization, clustering, classification, and prediction, to name a few, can help researchers understand users, behaviors, and health care phenomena by identifying novel, interesting patterns. These techniques can also be used to build predictive models [ 18 - 21 ]. In addition, data mining techniques can help in designing health care management systems and tracking the state of a person’s chronic disease, resulting in appropriate interventions and a reduction in hospital admissions [ 18 , 22 ]. Vast amounts of data can be generated when users interact with digital health technologies, which provides an opportunity to understand chronic illnesses as well as elucidate how users engage with digital health technologies in the real world. Armstrong et al [ 23 ] used the k-means algorithm to identify previously unknown patterns of clinical characteristics in home care rehabilitation services. The authors used k-means cluster analysis to analyze data from 150,253 clients and discovered new insights into the clients’ characteristics and their needs, which led to more appropriate rehabilitation services for home care clients. Madigan and Curet [ 22 ] used classification and regression trees to investigate a home-based health care data set that comprised 580 patients who had 3 specific conditions: chronic obstructive pulmonary disease (COPD), heart failure (HF), and hip replacement. They found that data mining methods identified the dependencies and interactions that influence the results, thereby improving the accuracy of risk adjustment methods and establishing practical benchmarks [ 22 ]. Other research [ 24 ] has developed a flow diagram of a proposed platform by using machine learning methods to analyze multiple health care data sets, including medical images as well as diagnostic and voice records. The authors believe that the system could help people in resource-limited areas, which have lower ratios of physicians and hospitals, to diagnose diseases such as breast cancer, heart disease (HD), diabetes, and liver disease at a lower cost and in less time than local hospitals. In the study, the accuracy of disease detection was >95% [ 24 ].

There are many different approaches to clustering analysis of health care data sets, such as k-means, density-based spatial clustering of applications with noise, agglomerative hierarchical clustering, self-organizing maps, partitioning around medoids algorithm, hybrid hierarchical clustering, and so on [ 25 - 28 ]. K-means clustering is 1 of the most commonly used clustering or unsupervised machine learning algorithms [ 19 , 29 ], and it is relatively easy to implement and relatively fast [ 30 - 32 ]. In addition, k-means has been used in research studies related to chronic health conditions such as diabetes [ 33 ], COPD [ 34 , 35 ], and HF [ 36 ]; for example, a cloud-based framework with k-means clustering technique has been used for the diagnosis of diabetes and was found to be more efficient and suitable for handling extensive data sets in cloud computing platforms than hierarchical clustering [ 32 ]. Violán et al [ 37 ] analyzed data from 408,994 patients aged 45 to 64 years with multimorbidity using k-means clustering to ascertain multimorbidity patterns. The authors stratified the k-means clustering analysis by sex, and 6 multimorbidity patterns were found for each sex. They also suggest that clusters identified by multimorbidity patterns obtained using nonhierarchical clustering analysis (eg, k-means and k-medoids) are more consistent with clinical practice [ 37 ].

The majority of data mining studies on chronic health conditions focus on the diseases themselves and their symptoms; there is less exploration of the patterns of engagement of persons with multimorbidity with digital health technologies. However, data mining and machine learning are excellent ways to understand users’ engagement patterns with digital health technologies. A study by McCauley et al [ 38 ] compared clustering analysis of the user interaction event log data from a reminiscence mobile app that was designed for people living with dementia. In addition to performing quantitative user interaction log analysis, the authors also gathered data on the qualitative experience of users. The study showed the benefits of using data mining to analyze the user log data with complementary qualitative data analysis [ 38 ]. This is a research challenge where both quantitative and qualitative methods can be combined to fully understand users; for example, the quantitative analysis of the user event data can tell us about use patterns, the preferred times of day to use the app, the feature use, and so on, but qualitative data (eg, user interviews) are necessary to understand why these use patterns exist.

The aim of this study was to analyze how older adults with multimorbidity engage with digital symptom and health monitoring over a period of approximately 12 months using a digital health platform. In this study, user log data of engagement with digital health technology and user interview qualitative data were examined to explore the patterns of engagement. K-means clustering was used to analyze the user log data. The study had four research questions: (1) How do clusters differ in terms of participant characteristics such as age, sex, and health conditions? (2) How do clusters differ in terms of patterns of engagement, such as the number of days a week participants take readings (eg, weight and blood pressure [BP])? (3) How do engagement rates with the different devices correlate with each other (determined by analyzing the weekly submissions of every parameter and the interviews of participants)? and (4) How do engagement rates affect participants’ health condition symptoms, such as BP, blood glucose (BG) level, weight, peripheral oxygen saturation (SpO 2 ) level, and physical activity (PA)?

The study was a proof-of-concept trial with an action research design and mixed methods approach. Action research is a period of investigation that “describes, interprets, and explains social situations while executing a change intervention aimed at improvement and involvement” [ 39 ]. An action research approach supports the generation of solutions to practical problems while using methods to understand the contexts of care as well as the needs and experiences of participants.

Recruitment and Sample

Although 120 participants consented to take part across Ireland and Belgium, this paper reports on data from 60 Irish older adults with multiple chronic health conditions (≥2 of the following: COPD, HF, HD, and diabetes). Participants were recruited through purposive sampling and from multiple sources, including through health care organizations (general practitioner clinics and specialist clinics), relevant older adult networks, chronic disease support groups, social media, and local newspaper advertising. Recruitment strategies included the use of study flyers and advertisements as well as giving talks and platform demonstrations.

Sources of Data

The data set was collected during the Integrated Technology Systems for Proactive Patient Centred Care (ProACT) project proof-of-concept trial. As the trial was a proof-of-concept of a novel digital health platform, the main goal was to understand how the platform worked or did not work, rather than whether it worked. Thus, to determine sample size, a pragmatic approach was taken in line with two important factors: (1) Is the sample size large enough to provide a reliable analysis of the ecosystem? and (2) Is the sample size small enough to be financially feasible? The literature suggests that overall sample size in proof-of-concept digital health trials is low. A review of 1030 studies on technical interventions for management of chronic disease that focused on HF (436 studies), stroke (422 studies), and COPD (172 studies) suggested that robust sample sizes were 17 for COPD, 19 for HF, and 21 for stroke [ 40 ]. Full details on the study protocol can be found in the study by Dinsmore et al [ 41 ].

Participants used a suite of sensor devices (ie, BP monitors, weight scales, glucometers, pulse oximeters, and activity watches) and a tablet app to monitor their health conditions and well-being. All participants received a smartwatch to measure PA levels and sleep, a BP monitor to measure BP and pulse rate, and a weight scale. A BG meter was provided to participants with diabetes, and a pulse oximeter was provided to those with COPD to measure SpO 2 levels. In addition, all participants received an iPad with a custom-designed app, the ProACT CareApp, that allowed users to view their data, provide self-report (SR) data on symptoms that could not be easily captured through a sensor (eg, breathlessness and edema) and well-being (eg, mood and satisfaction with social life), receive targeted education based on their current health status, set PA goals, and share their data with others. The ProACT platform was designed and developed following an extensive user-centered design process. This involved interviews, focus groups, co-design sessions (hands-on design activities with participants), and usability testing before the platform’s deployment in the trial. A total of 58 people with multimorbidity and 106 care network participants, including informal carers, formal carers, and health care professionals, took part in this process. Findings from the user-centered design process have been published elsewhere [ 42 , 43 ]. More detailed information about the full ProACT platform and the CareApp used by participants can be found in the study by Doyle et al [ 44 ].

The study took place between April 1, 2018, and June 30, 2019. Participants in the trial typically participated for 12 months, although some stayed on for 14 months and others for 9 months (in the case of those who entered the trial later). One of the trial objectives was to understand real-world engagement. Therefore, participants were asked to take readings with the devices and provide SR data in the ProACT CareApp whenever they wished (not necessarily daily). As part of the trial, participants were assisted by technical help desk staff who responded to questions about the technology, and home visits were conducted as needed to resolve issues. In addition, a clinical triage service monitored the participants’ readings and contacted them in instances of abnormal parameter values (eg, high BP and low SpO 2 levels) [ 45 ]. Participants also received a monthly check-in telephone call from 1 of the triage nurses.

Table 1 outlines the types of health and well-being metrics that were collected, as well as the collection method and the number of participants who collected that type of data. The health and well-being metrics were determined from the interviews and focus groups held with health care professionals during the design of the ProACT platform to determine the most important symptom and well-being parameters to monitor across the health conditions of interest [ 42 ]. Off-the-shelf digital devices manufactured by 2 providers, Withings and iHealth, were used during the trial. Data from these providers were extracted into a custom platform called Context-Aware Broker and Inference Engine–Subject Information Management System (CABIE-SIMS), which includes a data aggregator for storing health and well-being data. All devices require the user to interact with them in some way. However, some devices needed more interaction than others (eg, taking a BG reading involved several steps, but PA and sleep only required participants to open the activity watch app to sync the relevant data). The activity watch was supposed to synchronize automatically without user interaction. However, inconsistencies with syncing meant that users were advised to open the Withings app to sync their data. The CABIE-SIMS platform would display the readings in near real time, apart from PA data, which were collected at regular intervals throughout the day, whereas sleep data were gathered every morning. Table 1 lists the types of data that were collected and the number of participants who collected them. In addition, semistructured interviews were conducted with all participants at 4 time points throughout the trial to understand their experience of using the ProACT platform. Although a full qualitative thematic analysis was outside the scope of this study and was reported on elsewhere [ 44 ], interview transcripts for participants of interest to the analysis presented in this paper were reviewed as part of this study to provide an enhanced understanding of the results.

a SpO 2 : peripheral oxygen saturation.

b HF: heart failure.

c ProACT: Integrated Technology Systems for Proactive Patient Centred Care.

d CABIE-SIMS: Context-Aware Broker and Inference Engine–Subject Information Management System.

e COPD: chronic obstructive pulmonary disease.

Data Analysis Methods

The original data set in the CABIE-SIMS platform was formatted using the JSON format. As a first step, a JSON-to-CSV file converter was used to make the data set more accessible for data analysis. The main focus was on dealing with duplicate data and missing data during the data cleaning phase. Data duplication might occur when a user uploads their SpO 2 reading 3 times in 2 minutes as a result of mispressing the button. In such cases, only 1 record was added to the cleaned data file. As for missing data, the data set file comprised “N/A” (not available) values for all missing data.

The cleaned data set was preprocessed using Microsoft Excel, the R programming language (R Foundation for Statistical Computing), and RStudio (Posit Software, PBC). The preprocessed data set included participants’ details (ID, sex, age, and chronic health conditions) and the number of days of weekly submissions of every parameter (BP, pulse rate, SpO 2 level, BG level, weight, PA, SR data, and sleep). All analyses (including correlation analysis, principal component analysis [PCA], k-means clustering, 2-tailed t test, and 1-way ANOVA) were implemented in the R programming language and RStudio.

After performing Shapiro-Wilk normality tests on the data submitted each week, we found that the data were not normally distributed. Therefore, Spearman correlation was used to check the correlation among the parameters. Correlation analysis and PCA were used to determine which portions of the data would be included in the k-means clustering. Correlation analysis determined which characteristics or parameters should be selected, and PCA determined the number of dimensions that should be selected as features for clustering. In the clustering process, the weekly submission of each parameter was considered as an independent variable for the discovery of participant clusters, and the outcome of the clustering was a categorical taxonomy that was used to label the 3 discovered clusters. Similarly, the Shapiro-Wilk test was conducted to check the normality of the variables in each group. It was found that most of the variables in each group were normally distributed, and only the weight data submission records of cluster 3, the PA data submission records of cluster 2, the SR data submission records of cluster 3, and the sleep data submission records of cluster 1 were not normally distributed. Therefore, the 2-tailed t test and 1-way ANOVA were used to compare different groups of variables. The 2-tailed t test was used to compare 2 groups of variables, whereas 1-way ANOVA was used to compare ≥2 groups of variables. P values >.05 indicated that there were no statistically significant differences among the groups of variables [ 46 ].

As for the qualitative data from the interviews, we performed keyword searches after a review of the entire interview; for example, when the data analysis was related to BP and weight monitoring, a search with the keywords “blood pressure,” “weight,” or “scale” was performed to identify relevant information. In addition, when the aim was to understand the impact of digital health care technology, we focused on specific questions in the second interview, such as “Has it had any impact on the management of your health?”

Ethical Considerations

Ethics approval was received from 3 ethics committees: the Health Service Executive North East Area Research Ethics Committee, the School of Health and Science Research Ethics Committee at Dundalk Institute of Technology, and the Faculty of Health Sciences Research Ethics Committee at Trinity College Dublin. All procedures were in line with the European Union’s General Data Protection Regulation for research projects, with the platform and trial methods and procedures undergoing data protection impact assessments. Written informed consent was obtained on an individual basis from participants in accordance with legal and ethics guidelines after a careful explanation of the study and the provision of patient information and informed consent forms in plain language. All participants were informed of their right to withdraw from the study at any time without having to provide a reason. Participants were not compensated for their time. Data stored within the CABIE-SIMS platform were identifiable because they were shared (with the participant’s consent) with the clinical triage teams and health care professionals. This was clearly outlined in the participant information leaflet and consent form. However, the data set that was extracted for the purpose of the analysis presented in this paper was pseudonymized.

Participants

A total of 60 older adults were enrolled in the study. The average age of participants was 74 (SD 6.4; range 65-92) years; 60% (36) were male individuals, and 40% (24/60) were female individuals. The most common combination of health conditions was diabetes and HD (30/60, 50%), which was followed by COPD and HD (16/60, 27%); HF and HD (7/60, 12%); diabetes and COPD (3/60, 5%); diabetes and HF (1/60, 2%); COPD and HF (1/60, 2%); HF, HD, and COPD (1/60, 2%); and COPD, HD, and diabetes (1/60, 2%). Of the 60 participants, 11 (18%) had HF, 55 (92%) had HD, 22 (37%) had COPD, and 31 (52%) had diabetes. Over the course of the trial, of the 60 participants, 8 (13%) withdrew, and 3 (5%) died. However, this study included data from all participants in the beginning, as long as the participant had at least 1 piece of data. Hence, of the 60 participants, we included 56 (93%) in our analysis, whereas 4 (7%) were excluded because no data were recorded.

Correlation of Submission Parameters

To help determine which distinct use characteristics or parameters (such as the weekly frequency of BP data submissions) should be selected as features for clustering, the correlations among the parameters were calculated. Figure 1 shows the correlation matrix for all parameter weekly submissions (days). In this study, a moderate correlation (correlation coefficient between 0.3 to 0.7 and −0.7 to −0.3) [ 47 , 48 ] was chosen as the standard for selecting parameters. First, every participant received a BP monitor to measure BP, and pulse rate was collected as part of the BP measurement. Moreover, the correlation coefficient between BP and pulse rate was 0.93, a strong correlation. In this case, BP was selected for clustering rather than pulse rate. As for the other parameters, the correlations between BP and weight (0.51), PA (0.55), SR data (0.41), and sleep (0.55) were moderate, whereas the correlations between BP and SpO 2 level (0.05) and BG (0.24) were weak. In addition, the correlations between SpO 2 level and weight (−0.25), PA (0.16), SR data (0.29), and sleep (−0.24) were weak. Therefore, SpO 2 level was not selected for clustering. Likewise, the correlations between BG and weight (0.19), PA (0.2), SR data (−0.06), and sleep (0.25) were weak. Therefore, BG was not selected for clustering. Thus, BP, weight, PA, SR data, and sleep were selected for clustering.

what is conclusion in qualitative research

PCA and Clustering

The fundamental question for k-means clustering is this: how many clusters (k) should be discovered? To determine the optimum number of clusters, we further investigated the data through visualization offered by PCA. As can be seen from Figure 2 , the first 2 principal components (PCs) explain 73.6% of the variation, which is an acceptably large percentage. However, after a check of individual contributions, we found that there were 3 participants—P038, P016, and P015—who contributed substantially to PC1 and PC2. After a check of the original data set, we found that P038 submitted symptom parameters only on 1 day, and P016 submitted symptom parameters only on 2 days. Conversely, P015 submitted parameters almost every day during the trial. Therefore, P038 and P016 were omitted from clustering.

After removing the outliers (P038 and P016), we found that the first 2 PCs explain 70.5% of the variation ( Figure 3 ), which is an acceptably large percentage.

The clusters were projected into 2 dimensions as shown in Figure 4 . Each subpart in Figure 4 shows a different number of clusters (k). When k=2, the data are obviously separated into 2 big clusters. Similarly, when k=3, the clusters are still separated very well into 3 clusters. When k=4, the clusters are well separated, but compared with the subpart with 3 clusters, 2 clusters are similar, whereas cluster 1, which only has 3 participants, is a relatively small cluster. When k=5, there is some overlap between cluster 1 and cluster 2. Likewise, Figure 5 shows the optimal number of clusters using the elbow method. In view of this, we determined that 3 clusters of participants separate the data set best. The 3 clusters can be labeled as the least engaged user group (cluster 1), the highly engaged user group (cluster 2), and the typical user group (cluster 3).

In the remainder of this section, we report on the examination of the clusters with respect to participant characteristics and the weekly submissions (days) of different parameters in a visual manner to reveal potential correlations and insights. Finally, we report on the examination of the correlations among all parameters by PCA.

what is conclusion in qualitative research

Participant Characteristics

As seen in Figure 6 , the distribution of age within the 3 clusters is similar, with the P value of the 1-way ANOVA being .93, because all participants in this trial were older adults. However, the median age in the cluster 3 box plot is slightly higher than the median ages in the box plots of the other 2 clusters, and the average age of cluster 2 participants (74.1 years) is lower than that of cluster 1 (74.6 years) and cluster 3 (74.8 years; Table 2 ) participants. As Table 2 shows, 6 (26%) of the 23 female participants are in cluster 1 compared with 7 (23%) of the 31 male participants. However, the male participants in cluster 2 (10/31, 32%) and cluster 3 (14/31, 45%) represent higher proportions of total male participants compared with female participants in cluster 2 (7/23, 30%) and cluster 3 (10/23, 43%). Figure 7 shows the proportion of the 4 chronic health conditions within the 3 clusters. Cluster 1 has the largest proportion of participants with COPD and the smallest proportion of participants with diabetes. Moreover, cluster 3 has the smallest proportion of participants with HF (3/24, 13%; Table 2 ).

what is conclusion in qualitative research

a COPD: chronic obstructive pulmonary disease.

what is conclusion in qualitative research

Participant Engagement Outcomes

Cluster 2 has the longest average enrollment time at 352 days compared with cluster 3 at 335 days and cluster 1 at 330 days. As seen in Figure 8 , the overall distribution of the BP data weekly submissions is different, with the P value of the 1-way ANOVA being 8.4 × 10 −9 . The frequency of BP data weekly submissions (days) of cluster 2 exceeds the frequencies of cluster 1 and cluster 3, which means that participants in cluster 2 have a higher frequency of BP data submissions than those in the other 2 clusters. The median and maximum of cluster 3 are higher than those of cluster 1, but the minimum of cluster 3 is lower than that of cluster 1. Likewise, as seen in Table 3 , the mean and SD of cluster 1 (mean 2.5, SD 1.4) are smaller than those of cluster 3 (mean 2.9, SD 2.9).

As Figure 9 shows, the overall distribution of the weekly submissions of weight data is different, with the P value of the 1-way ANOVA being 1.4 × 10 −13 , because the participants in cluster 2 submitted weight parameters more frequently than those in cluster 1 and cluster 3. In addition, similar to the BP data submissions, the median of cluster 3 is higher than that of cluster 1. As seen in Figure 9 , there are 3 outliers in cluster 2. The top outlier is P015, who submitted a weight reading almost every day. During the trial, this participant mentioned many times in the interviews that his goal was to lose weight and that he used the scale to check his progress:

I’ve set out to reduce my weight. The doctor has been saying to me you know there’s where you are and you should be over here. So, I’ve been using the weighing thing just to clock, to track reduction of weight. [P015]

The other 2 outliers are P051 and P053, both of whom mentioned taking their weight measurements as part of their daily routine:

Once I get up in the morning the first thing is I weigh myself. That is, the day starts off with the weight, right. [P053]

Although their frequency of weekly weight data submissions is lower than that of all other participants in cluster 2, it is still higher than that of most of the participants in the other 2 clusters.

In Table 3 , it can be observed that the average frequency of weekly submissions of PA and sleep data for every cluster is higher than the frequencies of other variables, and the SDs are relatively low. This is likely because participants only needed to open the Withings app once a day to ensure the syncing of data. However, the overall distributions of PA and sleep data submissions are different in Figure 10 and Figure 11 , with the P values of the 1-way ANOVA being 1.1 × 10 −9 and 3.7 × 10 −10 , respectively. Moreover, as Figure 10 and Figure 11 show, there are still some outliers who have a low frequency of submissions, and the box plot of cluster 1 is lower than the box plots of cluster 2 and cluster 3 in both figures. The reasons for the low frequency of submissions can mostly be explained by (1) technical issues, including internet connection issues, devices not syncing, and devices needing to be paired again; (2) participants forgetting to put the watch back on after taking it off; and (3) participants stopping using the devices (eg, some participants do not like wearing the watch while sleeping or when they go on holiday):

I was without my watch there for the last month or 3 or 4 weeks [owing to technical issues], and I missed it very badly because everything I look at the watch to tell the time, I was looking at my steps. [P042]
I don’t wear it, I told them I wouldn’t wear the watch at night, I don’t like it. [P030]

Unlike in the case of other variables, the submission of SR data through the ProACT CareApp required participants to reflect on each question and their status before selecting the appropriate answer. Participants had different questions to answer based on their health conditions; for example, participants with HF and COPD were asked to answer symptom-related questions, whereas those with diabetes were not. All participants were presented with general well-being and mood questions. Therefore, for some participants, self-reporting could possibly take more time than using the health monitoring devices. As shown in Table 3 , the frequency of average weekly submissions of SR data within the 3 clusters is relatively small and the SDs are large, which means that the frequency of SR data submissions is lower than that of other variables. Furthermore, there were approximately 5 questions asked daily about general well-being, and some participants would skip the questions if they thought the question was unnecessary or not relevant:

Researcher: And do you answer your daily questions? P027: Yeah, once a week.
Researcher: Once a week, okay. P027: But they’re the same.

As Figure 12 shows, the distribution of SR data submissions is different, with the P value of the 1-way ANOVA being .001. In Figure 12 , the median of cluster 2 is higher than the medians of the other 2 clusters, and compared with other variables, but unlike other parameters, cluster 2 also has some participants who had very low SR data submission rates (close to 0). SR data is the only parameter where cluster 1 has a higher median than cluster 3.

what is conclusion in qualitative research

a Lowest submission rate across the clusters.

b Highest submission rate across the clusters.

what is conclusion in qualitative research

The Correlation Among the Weekly Submissions of Different Parameters

As seen in Figure 13 , the arrows of BP and weight point to the same side of the plot, which shows a strong correlation. Likewise, PA and sleep also have a strong correlation. As noted previously, the strong correlation between PA and sleep is because the same device collected these 2 measurements, and participants only needed to sync the data once a day. By contrast, BP and weight were collected by 2 different devices but are strongly correlated. During interviews, many participants mentioned that their daily routine with the ProACT platform involved taking both BP and weight readings:

Usually in the morning when I get out of the bed, first, I go into the bathroom, wash my hands and come back, then weigh myself, do my blood pressure, do my bloods. [P008]
I now have a routine that I let the system read my watch first thing, then I do my blood pressure thing and then I do the weight. [P015]
As I said, it’s keeping me in line with my, when I dip my finger, my weight, my blood pressure. [P040]
I use it in the morning and at night for putting in the details of blood pressure in the morning and then the blood glucose at night. Yes, there’s nothing else, is there? Oh, every morning the [weight] scales. [P058]

By contrast, as shown in Figure 13 , SR data have a weak correlation with other parameters, for reasons noted earlier.

what is conclusion in qualitative research

Parameter Variation Over Time

Analysis was conducted to determine any differences among the clusters in terms of symptom and well-being parameter changes over the course of the trial. Table 4 provides a description of each cluster in this regard. As Figure 14 shows, the box plot of cluster 2 is comparatively short in every time period of the trial, and the medians of cluster 2 and cluster 3 are more stable than the median of cluster 1. In addition, the median of cluster 1 is increasing over time, whereas the medians of cluster 2 and cluster 3 are decreasing and within the normal systolic BP of older adults [ 49 ] ( Figure 14 ). As can be seen in Table 5 , cluster 2 has a P value of .51 for systolic BP and a P value of .52 for diastolic BP, which are higher than the P values of cluster 1 ( P =.19 and P =.16, respectively) and cluster 3 ( P =.27 and P =.35, respectively). Therefore, participants in cluster 2, as highly engaged users, have more stable B P values than those in the other 2 clusters. By contrast, participants in cluster 1, as the least engaged users, have the most unstable B P values.

As seen in Figure 15 , the median of cluster 2 is relatively higher than the medians of the other 2 clusters. The median of cluster 3 is increasing over time. In the second and third time periods of the trial, the box plot of cluster 1 is comparatively short. Normal SpO 2 levels are between 95% and 100%, but older adults may have SpO 2 levels closer to 95% [ 50 ]. In addition, for patients with COPD, SpO 2 levels range between 88% and 92% [ 51 ]. In this case, there is not much difference in terms of SpO 2 levels, and most of the SpO 2 levels are between 90% and 95% in this study. However, the SpO 2 levels of cluster 1 and cluster 2 were maintained at a relatively high level during the trial. As for cluster 3, the SpO 2 levels were comparatively low but relatively the same as those in the other 2 clusters in the later period of the trial. Therefore, the SpO 2 levels of cluster 3 ( P =.25) are relatively unstable compared with those of cluster 1 ( P =.66) and cluster 2 ( P =.59). As such, there is little correlation between SpO 2 levels and engagement with digital health monitoring.

In relation to BG, Figure 16 shows that the box plot of cluster 2 is relatively lower than the box plots of the other 2 clusters in the second and third time periods. Moreover, the medians of cluster 2 and cluster 3 are lower than those of cluster 1 in the second and third time periods. The BG levels in cluster 2 and cluster 3 decreased at later periods of the trial compared with the beginning of the trial, but those in cluster 1 increased. Cluster 3 ( P =.25), as the typical user group, had more significant change than cluster 1 ( P =.50) and cluster 2 ( P =.41). Overall, participants with a higher engagement rate had better BG control.

In relation to weight, Figure 17 shows that the box plot of cluster 2 is lower than the box plots of the other 2 clusters and comparatively short. As Table 5 shows, the P value of cluster 2 weight data is .72, which is higher than the P values of cluster 1 (.47) and cluster 3 (.61). Therefore, participants in cluster 2 had a relatively stable weight during the trial. In addition, as seen in Figure 17 , the median weight of cluster 1 participants is decreasing, whereas that of cluster 3 participants is increasing. It is well known that there are many factors that can influence body weight, such as PA, diet, environmental factors, and so on. [ 52 ]. In this case, engagement with digital health and well-being monitoring may help control weight but the impact is not significant.

As Table 5 shows, the P value of cluster 2 PA (.049) is lower than .05, which means that there are significant differences among the 3 time slots in cluster 2. However, the median of cluster 2 PA, as seen in Figure 18 , is still higher than the medians of the other 2 clusters. In cluster 2, approximately 50% of daily PA (steps) consists of >2500 steps. Overall, participants with a higher engagement rate also had a higher level of PA.

a BP: blood pressure.

b BG: blood glucose.

c SR: self-report.

d PA: physical activity.

what is conclusion in qualitative research

b SpO 2 : peripheral oxygen saturation.

c BG: blood glucose.

what is conclusion in qualitative research

Principal Findings

Digital health technologies hold great promise to help older adults with multimorbidity to improve health management and health outcomes. However, such benefits can only be realized if users engage with the technology. The aim of this study was to explore the engagement patterns of older adults with multimorbidity with digital self-management by using data mining to analyze users’ weekly submission data. Three clusters were identified: cluster 1 (the least engaged user group), cluster 2 (the highly engaged user group), and cluster 3 (the typical user group). The subsequent analysis focused on how the clusters differ in terms of participant characteristics, patterns of engagement, and stabilization of health condition symptoms and well-being parameters over time, as well as how engagement rates with the different devices correlate with each other.

The key findings from the study are as follows:

  • There is no significant difference in participants’ characteristics among the clusters in general. The highly engaged group had the lowest average age ( Table 4 ), and there was no significant difference with regard to sex and health conditions among these clusters. The least engaged user group had fewer male participants and participants with diabetes.
  • There are 3 main factors influencing the correlations among the submission rates of different parameters. The first concerns whether the same device was used to submit the parameters, the second concerns the number of manual operations required to submit the parameter, and the third concerns the daily routine of the participants.
  • Increased engagement with devices may improve the participants’ health and well-being outcomes (eg, symptoms and PA levels). However, the difference between the highly engaged user group and the typical user group was relatively minimal compared with the difference between the highly engaged user group and the least engaged user group.

Each of these findings is discussed in further detail in the following subsections.

Although the findings presented in this paper focus on engagement based on the ProACT trial participants’ use data, the interviews that were carried out as part of the trial identified additional potential factors of engagement. As reported in the study by Doyle et al [ 44 ], participants spoke about how they used the data to support their self-management (eg, taking action based on their data) and experienced various benefits, including increased knowledge of their health conditions and well-being, symptom optimization, reductions in weight, increased PA, and increased confidence to participate in certain activities as a result of health improvements. The peace of mind and encouragement provided by the clinical triage service as well as the technical support available were also identified during the interviews as potential factors positively impacting engagement [ 44 ]. In addition, the platform was found to be usable, and it imposed minimal burden on participants ( Table 1 ). These findings supplement the quantitative findings presented in this paper.

Age, Sex, Health Condition Types, and Engagement

In this study, the difference in engagement with health care technologies between the sex was not significant. Of the 23 female participants, 6 (26%) were part of the least engaged user group compared with 7 (23%) of the 31 male participants. Moreover, there were lower proportions of female participants in the highly engaged user group (7/23, 30%) and typical user group (10/23, 43%) compared with male participants (10/31, 32% and 14/31, 45%, respectively). Other research has found that engagement with mobile health technology for BP monitoring was independent of sex [ 53 ]. However, there are also some studies that show that female participants are more likely to engage with digital mental health care interventions [ 54 , 55 ]. Therefore, sex cannot be considered as a separate criterion when comparing engagement with health care technologies, and it was not found to have significant impact on engagement in this study. Regarding age, many studies have shown that younger people are more likely to use health care technologies than older adults [ 56 , 57 ]. Although all participants in our study are older adults, the highly engaged user group is the youngest group. However, there was no significant difference in age among the clusters, with some of the oldest users being part of cluster 3, the typical user cluster. Similarly, the health conditions of a participant did not significantly impact their level of engagement. Other research [ 53 ] found that participants who were highly engaged with health monitoring had higher rates of hypertension, chronic kidney disease, and hypercholesterolemia than those with lower engagement levels. Our findings indicate that the highly engaged user group had a higher proportion of participants with diabetes, and the least engaged user group had a higher proportion of participants with COPD. Further research is needed to understand why there might be differences in engagement depending on health conditions. In our study, participants with COPD also self-reported on certain symptoms, such as breathlessness, chest tightness, and sputum amount and color. Although engagement with specific questions was not explored, participants in cluster 1, the least engaged user group, self-reported more frequently than those in cluster 3, the typical user group. Our findings also indicate that participants monitoring BG level and BP experienced better symptom stabilization over time than those monitoring SpO 2 level. It has been noted that the expected benefits of technology (eg, increased safety and usefulness) and need for technology (eg, subjective health status and perception of need) are 2 important factors that can influence the acceptance and use of technology by older adults [ 58 ]. It is also well understood that engaging in monitoring BG level can help people with diabetes to better self-manage and make decisions about diet, exercise, and medication [ 59 ].

Factors Influencing Engagement

Many research studies use P values to show the level of similarity or difference among clusters [ 60 - 63 ]. For most of the engagement outcomes in this study, all clusters significantly differed, with 1-way ANOVA P <.001, with the exception being SR data ( P =.001). In addition, the 2-tailed t test P values showed that cluster 2 was significantly different from cluster 1 and cluster 3 in BP and weight data submission rates, whereas cluster 1 was significantly different from cluster 2 and cluster 3 in PA and sleep data submission rates. As for SR data submission rates, all 3 two-tailed t tests had P values >.001, meaning that there were no significant differences between any 2 of these clusters. Therefore, all 5 parameters used for clustering were separated into 3 groups based on the correlations of submission rates: 1 for BP and weight, 1 for PA and sleep, and 1 for SR data. PA and sleep data submission rates have a strong correlation because participants used the same device to record daily PA and sleeping conditions. SR data submission rates have a weak correlation with other parameters’ submission rates. Our previous research found that user retention in terms of submitting SR data was poorer than user retention in terms of using digital health devices, possibly because more manual operations are involved in the submission of SR data than other parameters or because the same questions were asked regularly, as noted by P027 in the Participant Engagement Outcomes subsection [ 64 ].

Other research that analyzed engagement with a diabetes support app found that user engagement was lower when more manual data entry was required [ 65 ]. In contrast to the other 2 groups of parameters, BP and weight data are collected using different devices. Whereas measuring BP requires using a BP monitor and manually synchronizing the data, measuring weight simply requires standing on the weight scale, and the data are automatically synchronized. Therefore, the manual operations involved in submitting BP and weight data are slightly different. However, the results showed a strong correlation between BP and weight because many participants preferred to measure both BP and weight together and incorporate taking these measurements into their daily routines. Research has indicated that if the use of a health care device becomes a regular routine, then participants will use it without consciously thinking about it [ 66 ]. Likewise, Yuan et al [ 67 ] note that integrating health apps into people’s daily activities and forming regular habits can increase people’s willingness to continue using the apps. However, participants using health care technology for long periods of time might become less receptive to exploring the system compared with using it based on the established methods to which they are accustomed [ 68 ]. In this study, many participants bundled their BP measurement with their weight measurement during their morning routine. Therefore, the engagement rates of interacting with these 2 devices were enhanced by each other. Future work could explore how to integrate additional measurements, such as monitoring SpO 2 level as well as self-reporting into this routine (eg, through prompting the user to submit these parameters while they are engaging with monitoring other parameters, such as BP and weight).

Relationship Between Engagement and Health and Well-Being Outcomes

Our third finding indicates that higher levels of engagement with digital health monitoring may result in better outcomes, such as symptom stabilization and increased PA levels. Milani et al [ 69 ] found that digital health care interventions can help people achieve BP control and improve hypertension control compared with usual care. In their study, users in the digital intervention group took an average of 4.2 readings a week. Compared with our study, this rate is lower than that of cluster 2 (5.7), the highly engaged user group, but higher than cluster 1 (2.5) and cluster 3 (2.9) rates. In our study, participants with a higher engagement rate experienced more stable BP, and for the majority of these participants (34/41, 83%), levels were maintained within the recommended thresholds of 140/90 mm Hg [ 70 ]. Many studies have shown that as engagement in digital diabetes interventions increases, patients will experience greater reductions in BG level compared with those with lower engagement [ 71 , 72 ]. However, in our study, BG levels in both the highly engaged user group (cluster 2) and the least engaged user group (cluster 1) increased in the later stages of the trial. Only the BG levels of the typical user group (cluster 3) decreased over time, which could be because the cluster 3 participants performed more PA in the later stages of the trial than during other time periods, as Figure 18 shows. Cluster 2, the highly engaged user group, maintained a relatively high level of PA during the trial period, although it continued to decline throughout the trial. Other research shows that more PA can also lead to better weight control and management [ 73 , 74 ], which could be 1 of the reasons why cluster 2 participants maintained their weight.

Limitations

There are some limitations to the research presented in this paper. First, although the sample size (n=60) was relatively large for a digital health study, the sample sizes for some parameters were small because not all participants monitored all parameters. Second, the participants were clustered based on weekly submissions of parameters only. If more features were included in clustering, such as submission intervals, participants could be grouped differently. It should also be pointed out that correlation is not a causality with respect to analyzing engagement rates with outcomes.

Conclusions

This study presents findings after the clustering of a data set that was generated from a longitudinal study of older adults using a digital health technology platform (ProACT) to self-manage multiple chronic health conditions. The highly engaged user group cluster (includes 17/54, 31% of users) had the lowest average age and highest frequency of submissions for every parameter. Engagement with digital health care technologies may also influence health and well-being outcomes (eg, symptoms and PA levels). The least engaged user group in our study had relatively poorer outcomes. However, the difference between the outcomes of the highly engaged user group and those of the typical user group is relatively small. There are 3 possible reasons for the correlations between the submission rates of parameters and devices. First, if 2 parameters are collected by the same device, they usually have a strong correlation, and users will engage with both equally. Second, the devices that involve fewer steps and parameters with less manual data entry will have a weak correlation with those devices that require more manual operations and data entry. Finally, participants’ daily routines also influence the correlations among devices; for example, in this study, many participants had developed a daily routine to weigh themselves after measuring their BP, which led to a strong correlation between BP and weight data submission rates. Future work should explore how to integrate the monitoring of additional parameters into a user’s routine and whether additional characteristics, such as the severity of disease or technical proficiency, impact engagement.

Acknowledgments

This work was part funded by the Integrated Technology Systems for Proactive Patient Centred Care (ProACT) project and has received funding from the European Union (EU)–funded Horizon 2020 research and innovation program (689996). This work was part funded by the EU’s INTERREG VA program, managed by the Special EU Programs Body through the Eastern Corridor Medical Engineering Centre (ECME) project. This work was part funded by the Scaling European Citizen Driven Transferable and Transformative Digital Health (SEURO) project and has received funding from the EU-funded Horizon 2020 research and innovation program (945449). This work was part funded by the COVID-19 Relief for Researchers Scheme set up by Ireland’s Higher Education Authority. The authors would like to sincerely thank all the participants of this research for their valuable time.

Conflicts of Interest

None declared.

  • Ageing. United Nations. 2020. URL: https://www.un.org/en/global-issues/ageing [accessed 2022-01-13]
  • Centers for Disease Control and Prevention (CDC). Trends in aging--United States and worldwide. MMWR Morb Mortal Wkly Rep. Feb 14, 2003;52(6):101-104. [ FREE Full text ] [ Medline ]
  • Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann Fam Med. Jul 13, 2009;7(4):357-363. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. Sep 2011;10(4):430-439. [ CrossRef ] [ Medline ]
  • Zhang L, Ma L, Sun F, Tang Z, Chan P. A multicenter study of multimorbidity in older adult inpatients in China. J Nutr Health Aging. Mar 2020;24(3):269-276. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • van der Heide I, Snoeijs S, Melchiorre MG, Quattrini S, Boerma W, Schellevis F, et al. Innovating care for people with multiple chronic conditions in Europe. Innovating Care for people with Multiple Chronic Conditions in Europe (ICARE4EU). 2015. URL: http:/​/www.​icare4eu.org/​pdf/​Innovating-care-for-people-with-multiple-chronic-conditions-in-Europe.​pdf [accessed 2024-01-29]
  • Bartlett SJ, Lambert SD, McCusker J, Yaffe M, de Raad M, Belzile E, et al. Self-management across chronic diseases: targeting education and support needs. Patient Educ Couns. Feb 2020;103(2):398-404. [ CrossRef ] [ Medline ]
  • Anekwe TD, Rahkovsky I. Self-management: a comprehensive approach to management of chronic conditions. Am J Public Health. Dec 2018;108(S6):S430-S436. [ CrossRef ]
  • Barlow J, Wright C, Sheasby J, Turner A, Hainsworth J. Self-management approaches for people with chronic conditions: a review. Patient Educ Couns. 2002;48(2):177-187. [ CrossRef ] [ Medline ]
  • Setiawan IM, Zhou L, Alfikri Z, Saptono A, Fairman AD, Dicianno BE, et al. An adaptive mobile health system to support self-management for persons with chronic conditions and disabilities: usability and feasibility studie. JMIR Form Res. Apr 25, 2019;3(2):e12982. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Alanzi T. mHealth for diabetes self-management in the Kingdom of Saudi Arabia: barriers and solutions. J Multidiscip Healthc. 2018;11:535-546. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Nunes F, Verdezoto N, Fitzpatrick G, Kyng M, Grönvall E, Storni C. Self-care technologies in HCI. ACM Trans Comput Hum Interact. Dec 14, 2015;22(6):1-45. [ CrossRef ]
  • Klasnja P, Kendall L, Pratt W, Blondon K. Long-term engagement with health-management technology: a dynamic process in diabetes. AMIA Annu Symp Proc. 2015;2015:756-765. [ FREE Full text ] [ Medline ]
  • Talboom-Kamp EP, Verdijk NA, Harmans LM, Numans ME, Chavannes NH. An eHealth platform to manage chronic disease in primary care: an innovative approach. Interact J Med Res. Feb 09, 2016;5(1):e5. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Tighe SA, Ball K, Kensing F, Kayser L, Rawstorn JC, Maddison R. Toward a digital platform for the self-management of noncommunicable disease: systematic review of platform-like interventions. J Med Internet Res. Oct 28, 2020;22(10):e16774. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Pettersson B, Wiklund M, Janols R, Lindgren H, Lundin-Olsson L, Skelton DA, et al. 'Managing pieces of a personal puzzle' - older people's experiences of self-management falls prevention exercise guided by a digital program or a booklet. BMC Geriatr. Feb 18, 2019;19(1):43. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kario K. Management of hypertension in the digital era: mall wearable monitoring devices for remote blood pressure monitoring. Hypertension. Sep 2020;76(3):640-650. [ CrossRef ]
  • Koh HC, Tan G. Data mining applications in healthcare. J Healthc Inf Manag. 2005;19(2):64-72. [ Medline ]
  • Alsayat A, El-Sayed H. Efficient genetic k-means clustering for health care knowledge discovery. In: Proceedings of the 14th International Conference on Software Engineering Research, Management and Applications. 2016. Presented at: SERA '16; June 8-10, 2016;45-52; Towson, MD. URL: https://ieeexplore.ieee.org/document/7516127 [ CrossRef ]
  • Katsis Y, Balac N, Chapman D, Kapoor M, Block J, Griswold WG, et al. Big data techniques for public health: a case study. In: Proceedings of the 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies. 2017. Presented at: CHASE '17; July 17-19, 2017;222-231; Philadelphia, PA. URL: https://ieeexplore.ieee.org/document/8010636 [ CrossRef ]
  • Elbattah M, Molloy O. Data-driven patient segmentation using k-means clustering: the case of hip fracture care in Ireland. In: Proceedings of the 2017 Australasian Computer Science Week Multiconference. 2017. Presented at: ACSW '17; January 30- February 3, 2017;1-8; Geelong, Australia. URL: https://dl.acm.org/doi/10.1145/3014812.3014874 [ CrossRef ]
  • Madigan EA, Curet OL. A data mining approach in home healthcare: outcomes and service use. BMC Health Serv Res. Feb 24, 2006;6(1):18. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Armstrong JJ, Zhu M, Hirdes JP, Stolee P. K-means cluster analysis of rehabilitation service users in the home health care system of Ontario: examining the heterogeneity of a complex geriatric population. Arch Phys Med Rehabil. Dec 2012;93(12):2198-2205. [ CrossRef ] [ Medline ]
  • Islam MS, Liu D, Wang K, Zhou P, Yu L, Wu D. A case study of healthcare platform using big data analytics and machine learning. In: Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference. 2019. Presented at: HPCCT '19; June 22-24, 2019;139-146; Guangzhou, China. URL: https://dl.acm.org/doi/10.1145/3341069.3342980 [ CrossRef ]
  • Delias P, Doumpos M, Grigoroudis E, Manolitzas P, Matsatsinis N. Supporting healthcare management decisions via robust clustering of event logs. Knowl Based Syst. Aug 2015;84:203-213. [ CrossRef ]
  • Lefèvre T, Rondet C, Parizot I, Chauvin P. Applying multivariate clustering techniques to health data: the 4 types of healthcare utilization in the Paris metropolitan area. PLoS One. Dec 15, 2014;9(12):e115064. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ahmad P, Qamar S, Qasim Afser Rizvi S. Techniques of data mining in healthcare: a review. Int J Comput Appl. Jun 18, 2015;120(15):38-50. [ CrossRef ]
  • Mahoto NA, Shaikh FK, Ansari AQ. Exploitation of clustering techniques in transactional healthcare data. Mehran Univ Res J Eng Technol. 2014;33(1):77-92.
  • Zahi S, Achchab B. Clustering of the population benefiting from health insurance using k-means. In: Proceedings of the 4th International Conference on Smart City Applications. 2019. Presented at: SCA '19; October 2-4, 2019;1-6; Casablanca, Morocco. URL: https://dl.acm.org/doi/abs/10.1145/3368756.3369103 [ CrossRef ]
  • Jain AK. Data clustering: 50 years beyond k-means. Pattern Recognit Lett. Jun 2010;31(8):651-666. [ CrossRef ]
  • Silitonga P. Clustering of patient disease data by using k-means clustering. Int J Comput Sci Inf Sec. 2017;15(7):219-221. [ FREE Full text ]
  • Shakeel PM, Baskar S, Dhulipala VR, Jaber MM. Cloud based framework for diagnosis of diabetes mellitus using k-means clustering. Health Inf Sci Syst. Dec 24, 2018;6(1):16. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Berry E, Davies M, Dempster M. Illness perception clusters and relationship quality are associated with diabetes distress in adults with type 2 diabetes. Psychol Health Med. Oct 19, 2017;22(9):1118-1126. [ CrossRef ] [ Medline ]
  • Harrison S, Robertson N, Graham C, Williams J, Steiner M, Morgan M, et al. Can we identify patients with different illness schema following an acute exacerbation of COPD: a cluster analysis. Respir Med. Feb 2014;108(2):319-328. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lopes AC, Xavier RF, Ac Pereira AC, Stelmach R, Fernandes FL, Harrison SL, et al. Identifying COPD patients at risk for worse symptoms, HRQoL, and self-efficacy: a cluster analysis. Chronic Illn. Jun 17, 2019;15(2):138-148. [ CrossRef ] [ Medline ]
  • Cikes M, Sanchez-Martinez S, Claggett B, Duchateau N, Piella G, Butakoff C, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail. Jan 17, 2019;21(1):74-85. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Violán C, Roso-Llorach A, Foguet-Boreu Q, Guisado-Clavero M, Pons-Vigués M, Pujol-Ribera E, et al. Multimorbidity patterns with K-means nonhierarchical cluster analysis. BMC Fam Pract. Jul 03, 2018;19(1):108. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • McCauley CO, Bond RB, Ryan A, Mulvenna MD, Laird L, Gibson A, et al. Evaluating user engagement with a reminiscence app using cross-comparative analysis of user event logs and qualitative data. Cyberpsychol Behav Soc Netw. Aug 2019;22(8):543-551. [ CrossRef ] [ Medline ]
  • Waterman H, Tillen D, Dickson R, de Koning K. Action research: a systematic review and guidance for assessment. Health Technol Assess. 2001;5(23):iii-157. [ FREE Full text ] [ Medline ]
  • Bashshur RL, Shannon GW, Smith BR, Alverson DC, Antoniotti N, Barsan WG, et al. The empirical foundations of telemedicine interventions for chronic disease management. Telemed J E Health. Sep 2014;20(9):769-800. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Dinsmore J, Hannigan C, Smith S, Murphy E, Kuiper JM, O'Byrne E, et al. A digital health platform for integrated and proactive patient-centered multimorbidity self-management and care (ProACT): protocol for an action research proof-of-concept trial. JMIR Res Protoc. Dec 15, 2021;10(12):e22125. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Doyle J, Murphy E, Kuiper J, Smith S, Hannigan C, Jacobs A, et al. Managing multimorbidity: identifying design requirements for a digital self-management tool to support older adults with multiple chronic conditions. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 2019. Presented at: CHI '19; May 4-9, 2019;1-14; Glasgow, Scotland. URL: https://dl.acm.org/doi/10.1145/3290605.3300629 [ CrossRef ]
  • Doyle J, Murphy E, Hannigan C, Smith S, Bettencourt-Silva J, Dinsmore J. Designing digital goal support systems for multimorbidity self-management: insights from older adults and their care network. In: Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies for Healthcare. 2018. Presented at: PervasiveHealth '18; May 21-24, 2018;168-177; New York, NY. URL: https://dl.acm.org/doi/10.1145/3240925.3240982 [ CrossRef ]
  • Doyle J, Murphy E, Gavin S, Pascale A, Deparis S, Tommasi P, et al. A digital platform to support self-management of multiple chronic conditions (ProACT): findings in relation to engagement during a one-year proof-of-concept trial. J Med Internet Res. Dec 15, 2021;23(12):e22672. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Doyle J, McAleer P, van Leeuwen C, Smith S, Murphy E, Sillevis Smitt M, et al. The role of phone-based triage nurses in supporting older adults with multimorbidity to digitally self-manage - findings from the ProACT proof-of-concept study. Digit Health. Oct 09, 2022;8:20552076221131140. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ross A, Willson VL. One-way anova. In: Ross A, Willson VL, editors. Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures. Cham, Switzerland. Springer; 2017;21-24.
  • Dancey CP, Reidy J. Statistics without Maths for Psychology. Upper Saddle River, NJ. Prentice Hall; 2007.
  • Akoglu H. User's guide to correlation coefficients. Turk J Emerg Med. Sep 2018;18(3):91-93. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Master AM, Dublin LI, Marks HH. The normal blood pressure range and its clinical implications. J Am Med Assoc. Aug 26, 1950;143(17):1464-1470. [ CrossRef ] [ Medline ]
  • Cunha JP. What is a good oxygen rate by age? eMedicineHealth. URL: https://www.emedicinehealth.com/what_is_a_good_ oxygen_rate_by_age/article_em.htm [accessed 2024-01-29]
  • Echevarria C, Steer J, Wason J, Bourke S. Oxygen therapy and inpatient mortality in COPD exacerbation. Emerg Med J. Mar 26, 2021;38(3):170-177. [ CrossRef ] [ Medline ]
  • Atkinson Jr RL, Butterfield G, Dietz W, Fernstrom J, Frank A, Hansen B. Weight Management: State of the Science and Opportunities for Military Programs. Washington, DC. National Academies Press; 2003.
  • Kaplan AL, Cohen ER, Zimlichman E. Improving patient engagement in self-measured blood pressure monitoring using a mobile health technology. Health Inf Sci Syst. Dec 07, 2017;5(1):4. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Mikolasek M, Witt CM, Barth J. Adherence to a mindfulness and relaxation self-care app for cancer patients: mixed-methods feasibility study. JMIR Mhealth Uhealth. Dec 06, 2018;6(12):e11271. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Harjumaa M, Halttu K, Koistinen K, Oinas-Kukkonen H. User experience of mobile coaching for stress-management to tackle prevalent health complaints. In: Proceedings of the 6th Scandinavian Conference on Information Systems. 2015. Presented at: SCIS '15; August 9-12, 2015; Oulu, Finland. URL: https:/​/cris.​vtt.fi/​en/​publications/​user-experience-of-mobile-coaching-for-stress-management-to-tackl [ CrossRef ]
  • Kannisto KA, Korhonen J, Adams CE, Koivunen MH, Vahlberg T, Välimäki MA. Factors associated with dropout during recruitment and follow-up periods of a mHealth-based randomized controlled trial for mobile.net to encourage treatment adherence for people with serious mental health problems. J Med Internet Res. Feb 21, 2017;19(2):e46. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Abel EA, Shimada SL, Wang K, Ramsey C, Skanderson M, Erdos J, et al. Dual use of a patient portal and clinical video telehealth by veterans with mental health diagnoses: retrospective, cross-sectional analysis. J Med Internet Res. Nov 07, 2018;20(11):e11350. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Peek ST, Wouters EJ, van Hoof J, Luijkx KG, Boeije HR, Vrijhoef HJ. Factors influencing acceptance of technology for aging in place: a systematic review. Int J Med Inform. Apr 2014;83(4):235-248. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Weinstock RS, Aleppo G, Bailey TS, Bergenstal RM, Fisher WA, Greenwood DA, et al. The role of blood glucose monitoring in diabetes management. Compendia. Oct 2022;2020(3):1-32. [ CrossRef ] [ Medline ]
  • Rahman QA, Janmohamed T, Pirbaglou M, Ritvo P, Heffernan JM, Clarke H, et al. Patterns of user engagement with the mobile app, manage my pain: results of a data mining investigation. JMIR Mhealth Uhealth. Jul 12, 2017;5(7):e96. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Booth FG, R Bond R, D Mulvenna M, Cleland B, McGlade K, Rankin D, et al. Discovering and comparing types of general practitioner practices using geolocational features and prescribing behaviours by means of K-means clustering. Sci Rep. Sep 14, 2021;11(1):18289. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Sulistyono MT, Pane ES, Wibawa AD, Purnomo MH. Analysis of EEG-based stroke severity groups clustering using k-means. In: Proceedings of the 2021 International Seminar on Intelligent Technology and Its Applications. 2021. Presented at: ISITIA '21; July 21-22, 2021;67-74; Surabaya, Indonesia. URL: https://ieeexplore.ieee.org/document/9502250 [ CrossRef ]
  • Oskooei A, Chau SM, Weiss J, Sridhar A, Martínez MR, Michel B. DeStress: deep learning for unsupervised identification of mental stress in firefighters from heart-rate variability (HRV) data. In: Shaban-Nejad A, Michalowski M, Buckeridge DL, editors. Explainability and Interpretability: Keys to Deep Medicine. Cham, Switzerland. Springer; 2020;93-105.
  • Sheng Y, Doyle J, Bond R, Jaiswal R, Gavin S, Dinsmore J. Home-based digital health technologies for older adults to self-manage multiple chronic conditions: a data-informed analysis of user engagement from a longitudinal trial. Digit Health. Sep 22, 2022;8:20552076221125957. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Böhm AK, Jensen ML, Sørensen MR, Stargardt T. Real-world evidence of user engagement with mobile health for diabetes management: longitudinal observational study. JMIR Mhealth Uhealth. Nov 06, 2020;8(11):e22212. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kim SS, Malhotra NK. A longitudinal model of continued is use: an integrative view of four mechanisms underlying postadoption phenomena. Manag Sci. May 2005;51(5):741-755. [ CrossRef ]
  • Yuan S, Ma W, Kanthawala S, Peng W. Keep using my health apps: discover users' perception of health and fitness apps with the UTAUT2 model. Telemed J E Health. Sep 2015;21(9):735-741. [ CrossRef ] [ Medline ]
  • O'Connor Y, O'Reilly P, O'Donoghue J. M-health infusion by healthcare practitioners in the national health services (NHS). Health Policy Technol. Mar 2013;2(1):26-35. [ CrossRef ]
  • Milani RV, Lavie CJ, Bober RM, Milani AR, Ventura HO. Improving hypertension control and patient engagement using digital tools. Am J Med. Jan 2017;130(1):14-20. [ CrossRef ] [ Medline ]
  • Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. ESC Scientific Document Group. 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. Sep 01, 2018;39(33):3021-3104. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Quinn CC, Butler EC, Swasey KK, Shardell MD, Terrin MD, Barr EA, et al. Mobile diabetes intervention study of patient engagement and impact on blood glucose: mixed methods analysis. JMIR Mhealth Uhealth. Feb 02, 2018;6(2):e31. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Sepah SC, Jiang L, Ellis RJ, McDermott K, Peters AL. Engagement and outcomes in a digital diabetes prevention program: 3-year update. BMJ Open Diabetes Res Care. Sep 07, 2017;5(1):e000422. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Carroll JK, Moorhead A, Bond R, LeBlanc WG, Petrella RJ, Fiscella K. Who uses mobile phone health apps and does use matter? a secondary data analytics approach. J Med Internet Res. Apr 19, 2017;19(4):e125. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Demark-Wahnefried W, Schmitz KH, Alfano CM, Bail JR, Goodwin PJ, Thomson CA, et al. Weight management and physical activity throughout the cancer care continuum. CA Cancer J Clin. Jan 2018;68(1):64-89. [ FREE Full text ] [ CrossRef ] [ Medline ]

Abbreviations

Edited by T Leung, T de Azevedo Cardoso; submitted 05.02.23; peer-reviewed by B Chaudhry, M Peeples, A DeVito Dabbs; comments to author 12.09.23; revised version received 25.10.23; accepted 29.01.24; published 28.03.24.

©Yiyang Sheng, Raymond Bond, Rajesh Jaiswal, John Dinsmore, Julie Doyle. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 28.03.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of springeropen

What is Qualitative in Qualitative Research

Patrik aspers.

1 Department of Sociology, Uppsala University, Uppsala, Sweden

2 Seminar for Sociology, Universität St. Gallen, St. Gallen, Switzerland

3 Department of Media and Social Sciences, University of Stavanger, Stavanger, Norway

What is qualitative research? If we look for a precise definition of qualitative research, and specifically for one that addresses its distinctive feature of being “qualitative,” the literature is meager. In this article we systematically search, identify and analyze a sample of 89 sources using or attempting to define the term “qualitative.” Then, drawing on ideas we find scattered across existing work, and based on Becker’s classic study of marijuana consumption, we formulate and illustrate a definition that tries to capture its core elements. We define qualitative research as an iterative process in which improved understanding to the scientific community is achieved by making new significant distinctions resulting from getting closer to the phenomenon studied. This formulation is developed as a tool to help improve research designs while stressing that a qualitative dimension is present in quantitative work as well. Additionally, it can facilitate teaching, communication between researchers, diminish the gap between qualitative and quantitative researchers, help to address critiques of qualitative methods, and be used as a standard of evaluation of qualitative research.

If we assume that there is something called qualitative research, what exactly is this qualitative feature? And how could we evaluate qualitative research as good or not? Is it fundamentally different from quantitative research? In practice, most active qualitative researchers working with empirical material intuitively know what is involved in doing qualitative research, yet perhaps surprisingly, a clear definition addressing its key feature is still missing.

To address the question of what is qualitative we turn to the accounts of “qualitative research” in textbooks and also in empirical work. In his classic, explorative, interview study of deviance Howard Becker ( 1963 ) asks ‘How does one become a marijuana user?’ In contrast to pre-dispositional and psychological-individualistic theories of deviant behavior, Becker’s inherently social explanation contends that becoming a user of this substance is the result of a three-phase sequential learning process. First, potential users need to learn how to smoke it properly to produce the “correct” effects. If not, they are likely to stop experimenting with it. Second, they need to discover the effects associated with it; in other words, to get “high,” individuals not only have to experience what the drug does, but also to become aware that those sensations are related to using it. Third, they require learning to savor the feelings related to its consumption – to develop an acquired taste. Becker, who played music himself, gets close to the phenomenon by observing, taking part, and by talking to people consuming the drug: “half of the fifty interviews were conducted with musicians, the other half covered a wide range of people, including laborers, machinists, and people in the professions” (Becker 1963 :56).

Another central aspect derived through the common-to-all-research interplay between induction and deduction (Becker 2017 ), is that during the course of his research Becker adds scientifically meaningful new distinctions in the form of three phases—distinctions, or findings if you will, that strongly affect the course of his research: its focus, the material that he collects, and which eventually impact his findings. Each phase typically unfolds through social interaction, and often with input from experienced users in “a sequence of social experiences during which the person acquires a conception of the meaning of the behavior, and perceptions and judgments of objects and situations, all of which make the activity possible and desirable” (Becker 1963 :235). In this study the increased understanding of smoking dope is a result of a combination of the meaning of the actors, and the conceptual distinctions that Becker introduces based on the views expressed by his respondents. Understanding is the result of research and is due to an iterative process in which data, concepts and evidence are connected with one another (Becker 2017 ).

Indeed, there are many definitions of qualitative research, but if we look for a definition that addresses its distinctive feature of being “qualitative,” the literature across the broad field of social science is meager. The main reason behind this article lies in the paradox, which, to put it bluntly, is that researchers act as if they know what it is, but they cannot formulate a coherent definition. Sociologists and others will of course continue to conduct good studies that show the relevance and value of qualitative research addressing scientific and practical problems in society. However, our paper is grounded in the idea that providing a clear definition will help us improve the work that we do. Among researchers who practice qualitative research there is clearly much knowledge. We suggest that a definition makes this knowledge more explicit. If the first rationale for writing this paper refers to the “internal” aim of improving qualitative research, the second refers to the increased “external” pressure that especially many qualitative researchers feel; pressure that comes both from society as well as from other scientific approaches. There is a strong core in qualitative research, and leading researchers tend to agree on what it is and how it is done. Our critique is not directed at the practice of qualitative research, but we do claim that the type of systematic work we do has not yet been done, and that it is useful to improve the field and its status in relation to quantitative research.

The literature on the “internal” aim of improving, or at least clarifying qualitative research is large, and we do not claim to be the first to notice the vagueness of the term “qualitative” (Strauss and Corbin 1998 ). Also, others have noted that there is no single definition of it (Long and Godfrey 2004 :182), that there are many different views on qualitative research (Denzin and Lincoln 2003 :11; Jovanović 2011 :3), and that more generally, we need to define its meaning (Best 2004 :54). Strauss and Corbin ( 1998 ), for example, as well as Nelson et al. (1992:2 cited in Denzin and Lincoln 2003 :11), and Flick ( 2007 :ix–x), have recognized that the term is problematic: “Actually, the term ‘qualitative research’ is confusing because it can mean different things to different people” (Strauss and Corbin 1998 :10–11). Hammersley has discussed the possibility of addressing the problem, but states that “the task of providing an account of the distinctive features of qualitative research is far from straightforward” ( 2013 :2). This confusion, as he has recently further argued (Hammersley 2018 ), is also salient in relation to ethnography where different philosophical and methodological approaches lead to a lack of agreement about what it means.

Others (e.g. Hammersley 2018 ; Fine and Hancock 2017 ) have also identified the treat to qualitative research that comes from external forces, seen from the point of view of “qualitative research.” This threat can be further divided into that which comes from inside academia, such as the critique voiced by “quantitative research” and outside of academia, including, for example, New Public Management. Hammersley ( 2018 ), zooming in on one type of qualitative research, ethnography, has argued that it is under treat. Similarly to Fine ( 2003 ), and before him Gans ( 1999 ), he writes that ethnography’ has acquired a range of meanings, and comes in many different versions, these often reflecting sharply divergent epistemological orientations. And already more than twenty years ago while reviewing Denzin and Lincoln’ s Handbook of Qualitative Methods Fine argued:

While this increasing centrality [of qualitative research] might lead one to believe that consensual standards have developed, this belief would be misleading. As the methodology becomes more widely accepted, querulous challengers have raised fundamental questions that collectively have undercut the traditional models of how qualitative research is to be fashioned and presented (1995:417).

According to Hammersley, there are today “serious treats to the practice of ethnographic work, on almost any definition” ( 2018 :1). He lists five external treats: (1) that social research must be accountable and able to show its impact on society; (2) the current emphasis on “big data” and the emphasis on quantitative data and evidence; (3) the labor market pressure in academia that leaves less time for fieldwork (see also Fine and Hancock 2017 ); (4) problems of access to fields; and (5) the increased ethical scrutiny of projects, to which ethnography is particularly exposed. Hammersley discusses some more or less insufficient existing definitions of ethnography.

The current situation, as Hammersley and others note—and in relation not only to ethnography but also qualitative research in general, and as our empirical study shows—is not just unsatisfactory, it may even be harmful for the entire field of qualitative research, and does not help social science at large. We suggest that the lack of clarity of qualitative research is a real problem that must be addressed.

Towards a Definition of Qualitative Research

Seen in an historical light, what is today called qualitative, or sometimes ethnographic, interpretative research – or a number of other terms – has more or less always existed. At the time the founders of sociology – Simmel, Weber, Durkheim and, before them, Marx – were writing, and during the era of the Methodenstreit (“dispute about methods”) in which the German historical school emphasized scientific methods (cf. Swedberg 1990 ), we can at least speak of qualitative forerunners.

Perhaps the most extended discussion of what later became known as qualitative methods in a classic work is Bronisław Malinowski’s ( 1922 ) Argonauts in the Western Pacific , although even this study does not explicitly address the meaning of “qualitative.” In Weber’s ([1921–-22] 1978) work we find a tension between scientific explanations that are based on observation and quantification and interpretative research (see also Lazarsfeld and Barton 1982 ).

If we look through major sociology journals like the American Sociological Review , American Journal of Sociology , or Social Forces we will not find the term qualitative sociology before the 1970s. And certainly before then much of what we consider qualitative classics in sociology, like Becker’ study ( 1963 ), had already been produced. Indeed, the Chicago School often combined qualitative and quantitative data within the same study (Fine 1995 ). Our point being that before a disciplinary self-awareness the term quantitative preceded qualitative, and the articulation of the former was a political move to claim scientific status (Denzin and Lincoln 2005 ). In the US the World War II seem to have sparked a critique of sociological work, including “qualitative work,” that did not follow the scientific canon (Rawls 2018 ), which was underpinned by a scientifically oriented and value free philosophy of science. As a result the attempts and practice of integrating qualitative and quantitative sociology at Chicago lost ground to sociology that was more oriented to surveys and quantitative work at Columbia under Merton-Lazarsfeld. The quantitative tradition was also able to present textbooks (Lundberg 1951 ) that facilitated the use this approach and its “methods.” The practices of the qualitative tradition, by and large, remained tacit or was part of the mentoring transferred from the renowned masters to their students.

This glimpse into history leads us back to the lack of a coherent account condensed in a definition of qualitative research. Many of the attempts to define the term do not meet the requirements of a proper definition: A definition should be clear, avoid tautology, demarcate its domain in relation to the environment, and ideally only use words in its definiens that themselves are not in need of definition (Hempel 1966 ). A definition can enhance precision and thus clarity by identifying the core of the phenomenon. Preferably, a definition should be short. The typical definition we have found, however, is an ostensive definition, which indicates what qualitative research is about without informing us about what it actually is :

Qualitative research is multimethod in focus, involving an interpretative, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Qualitative research involves the studied use and collection of a variety of empirical materials – case study, personal experience, introspective, life story, interview, observational, historical, interactional, and visual texts – that describe routine and problematic moments and meanings in individuals’ lives. (Denzin and Lincoln 2005 :2)

Flick claims that the label “qualitative research” is indeed used as an umbrella for a number of approaches ( 2007 :2–4; 2002 :6), and it is not difficult to identify research fitting this designation. Moreover, whatever it is, it has grown dramatically over the past five decades. In addition, courses have been developed, methods have flourished, arguments about its future have been advanced (for example, Denzin and Lincoln 1994) and criticized (for example, Snow and Morrill 1995 ), and dedicated journals and books have mushroomed. Most social scientists have a clear idea of research and how it differs from journalism, politics and other activities. But the question of what is qualitative in qualitative research is either eluded or eschewed.

We maintain that this lacuna hinders systematic knowledge production based on qualitative research. Paul Lazarsfeld noted the lack of “codification” as early as 1955 when he reviewed 100 qualitative studies in order to offer a codification of the practices (Lazarsfeld and Barton 1982 :239). Since then many texts on “qualitative research” and its methods have been published, including recent attempts (Goertz and Mahoney 2012 ) similar to Lazarsfeld’s. These studies have tried to extract what is qualitative by looking at the large number of empirical “qualitative” studies. Our novel strategy complements these endeavors by taking another approach and looking at the attempts to codify these practices in the form of a definition, as well as to a minor extent take Becker’s study as an exemplar of what qualitative researchers actually do, and what the characteristic of being ‘qualitative’ denotes and implies. We claim that qualitative researchers, if there is such a thing as “qualitative research,” should be able to codify their practices in a condensed, yet general way expressed in language.

Lingering problems of “generalizability” and “how many cases do I need” (Small 2009 ) are blocking advancement – in this line of work qualitative approaches are said to differ considerably from quantitative ones, while some of the former unsuccessfully mimic principles related to the latter (Small 2009 ). Additionally, quantitative researchers sometimes unfairly criticize the first based on their own quality criteria. Scholars like Goertz and Mahoney ( 2012 ) have successfully focused on the different norms and practices beyond what they argue are essentially two different cultures: those working with either qualitative or quantitative methods. Instead, similarly to Becker ( 2017 ) who has recently questioned the usefulness of the distinction between qualitative and quantitative research, we focus on similarities.

The current situation also impedes both students and researchers in focusing their studies and understanding each other’s work (Lazarsfeld and Barton 1982 :239). A third consequence is providing an opening for critiques by scholars operating within different traditions (Valsiner 2000 :101). A fourth issue is that the “implicit use of methods in qualitative research makes the field far less standardized than the quantitative paradigm” (Goertz and Mahoney 2012 :9). Relatedly, the National Science Foundation in the US organized two workshops in 2004 and 2005 to address the scientific foundations of qualitative research involving strategies to improve it and to develop standards of evaluation in qualitative research. However, a specific focus on its distinguishing feature of being “qualitative” while being implicitly acknowledged, was discussed only briefly (for example, Best 2004 ).

In 2014 a theme issue was published in this journal on “Methods, Materials, and Meanings: Designing Cultural Analysis,” discussing central issues in (cultural) qualitative research (Berezin 2014 ; Biernacki 2014 ; Glaeser 2014 ; Lamont and Swidler 2014 ; Spillman 2014). We agree with many of the arguments put forward, such as the risk of methodological tribalism, and that we should not waste energy on debating methods separated from research questions. Nonetheless, a clarification of the relation to what is called “quantitative research” is of outmost importance to avoid misunderstandings and misguided debates between “qualitative” and “quantitative” researchers. Our strategy means that researchers, “qualitative” or “quantitative” they may be, in their actual practice may combine qualitative work and quantitative work.

In this article we accomplish three tasks. First, we systematically survey the literature for meanings of qualitative research by looking at how researchers have defined it. Drawing upon existing knowledge we find that the different meanings and ideas of qualitative research are not yet coherently integrated into one satisfactory definition. Next, we advance our contribution by offering a definition of qualitative research and illustrate its meaning and use partially by expanding on the brief example introduced earlier related to Becker’s work ( 1963 ). We offer a systematic analysis of central themes of what researchers consider to be the core of “qualitative,” regardless of style of work. These themes – which we summarize in terms of four keywords: distinction, process, closeness, improved understanding – constitute part of our literature review, in which each one appears, sometimes with others, but never all in the same definition. They serve as the foundation of our contribution. Our categories are overlapping. Their use is primarily to organize the large amount of definitions we have identified and analyzed, and not necessarily to draw a clear distinction between them. Finally, we continue the elaboration discussed above on the advantages of a clear definition of qualitative research.

In a hermeneutic fashion we propose that there is something meaningful that deserves to be labelled “qualitative research” (Gadamer 1990 ). To approach the question “What is qualitative in qualitative research?” we have surveyed the literature. In conducting our survey we first traced the word’s etymology in dictionaries, encyclopedias, handbooks of the social sciences and of methods and textbooks, mainly in English, which is common to methodology courses. It should be noted that we have zoomed in on sociology and its literature. This discipline has been the site of the largest debate and development of methods that can be called “qualitative,” which suggests that this field should be examined in great detail.

In an ideal situation we should expect that one good definition, or at least some common ideas, would have emerged over the years. This common core of qualitative research should be so accepted that it would appear in at least some textbooks. Since this is not what we found, we decided to pursue an inductive approach to capture maximal variation in the field of qualitative research; we searched in a selection of handbooks, textbooks, book chapters, and books, to which we added the analysis of journal articles. Our sample comprises a total of 89 references.

In practice we focused on the discipline that has had a clear discussion of methods, namely sociology. We also conducted a broad search in the JSTOR database to identify scholarly sociology articles published between 1998 and 2017 in English with a focus on defining or explaining qualitative research. We specifically zoom in on this time frame because we would have expect that this more mature period would have produced clear discussions on the meaning of qualitative research. To find these articles we combined a number of keywords to search the content and/or the title: qualitative (which was always included), definition, empirical, research, methodology, studies, fieldwork, interview and observation .

As a second phase of our research we searched within nine major sociological journals ( American Journal of Sociology , Sociological Theory , American Sociological Review , Contemporary Sociology , Sociological Forum , Sociological Theory , Qualitative Research , Qualitative Sociology and Qualitative Sociology Review ) for articles also published during the past 19 years (1998–2017) that had the term “qualitative” in the title and attempted to define qualitative research.

Lastly we picked two additional journals, Qualitative Research and Qualitative Sociology , in which we could expect to find texts addressing the notion of “qualitative.” From Qualitative Research we chose Volume 14, Issue 6, December 2014, and from Qualitative Sociology we chose Volume 36, Issue 2, June 2017. Within each of these we selected the first article; then we picked the second article of three prior issues. Again we went back another three issues and investigated article number three. Finally we went back another three issues and perused article number four. This selection criteria was used to get a manageable sample for the analysis.

The coding process of the 89 references we gathered in our selected review began soon after the first round of material was gathered, and we reduced the complexity created by our maximum variation sampling (Snow and Anderson 1993 :22) to four different categories within which questions on the nature and properties of qualitative research were discussed. We call them: Qualitative and Quantitative Research, Qualitative Research, Fieldwork, and Grounded Theory. This – which may appear as an illogical grouping – merely reflects the “context” in which the matter of “qualitative” is discussed. If the selection process of the material – books and articles – was informed by pre-knowledge, we used an inductive strategy to code the material. When studying our material, we identified four central notions related to “qualitative” that appear in various combinations in the literature which indicate what is the core of qualitative research. We have labeled them: “distinctions”, “process,” “closeness,” and “improved understanding.” During the research process the categories and notions were improved, refined, changed, and reordered. The coding ended when a sense of saturation in the material arose. In the presentation below all quotations and references come from our empirical material of texts on qualitative research.

Analysis – What is Qualitative Research?

In this section we describe the four categories we identified in the coding, how they differently discuss qualitative research, as well as their overall content. Some salient quotations are selected to represent the type of text sorted under each of the four categories. What we present are examples from the literature.

Qualitative and Quantitative

This analytic category comprises quotations comparing qualitative and quantitative research, a distinction that is frequently used (Brown 2010 :231); in effect this is a conceptual pair that structures the discussion and that may be associated with opposing interests. While the general goal of quantitative and qualitative research is the same – to understand the world better – their methodologies and focus in certain respects differ substantially (Becker 1966 :55). Quantity refers to that property of something that can be determined by measurement. In a dictionary of Statistics and Methodology we find that “(a) When referring to *variables, ‘qualitative’ is another term for *categorical or *nominal. (b) When speaking of kinds of research, ‘qualitative’ refers to studies of subjects that are hard to quantify, such as art history. Qualitative research tends to be a residual category for almost any kind of non-quantitative research” (Stiles 1998:183). But it should be obvious that one could employ a quantitative approach when studying, for example, art history.

The same dictionary states that quantitative is “said of variables or research that can be handled numerically, usually (too sharply) contrasted with *qualitative variables and research” (Stiles 1998:184). From a qualitative perspective “quantitative research” is about numbers and counting, and from a quantitative perspective qualitative research is everything that is not about numbers. But this does not say much about what is “qualitative.” If we turn to encyclopedias we find that in the 1932 edition of the Encyclopedia of the Social Sciences there is no mention of “qualitative.” In the Encyclopedia from 1968 we can read:

Qualitative Analysis. For methods of obtaining, analyzing, and describing data, see [the various entries:] CONTENT ANALYSIS; COUNTED DATA; EVALUATION RESEARCH, FIELD WORK; GRAPHIC PRESENTATION; HISTORIOGRAPHY, especially the article on THE RHETORIC OF HISTORY; INTERVIEWING; OBSERVATION; PERSONALITY MEASUREMENT; PROJECTIVE METHODS; PSYCHOANALYSIS, article on EXPERIMENTAL METHODS; SURVEY ANALYSIS, TABULAR PRESENTATION; TYPOLOGIES. (Vol. 13:225)

Some, like Alford, divide researchers into methodologists or, in his words, “quantitative and qualitative specialists” (Alford 1998 :12). Qualitative research uses a variety of methods, such as intensive interviews or in-depth analysis of historical materials, and it is concerned with a comprehensive account of some event or unit (King et al. 1994 :4). Like quantitative research it can be utilized to study a variety of issues, but it tends to focus on meanings and motivations that underlie cultural symbols, personal experiences, phenomena and detailed understanding of processes in the social world. In short, qualitative research centers on understanding processes, experiences, and the meanings people assign to things (Kalof et al. 2008 :79).

Others simply say that qualitative methods are inherently unscientific (Jovanović 2011 :19). Hood, for instance, argues that words are intrinsically less precise than numbers, and that they are therefore more prone to subjective analysis, leading to biased results (Hood 2006 :219). Qualitative methodologies have raised concerns over the limitations of quantitative templates (Brady et al. 2004 :4). Scholars such as King et al. ( 1994 ), for instance, argue that non-statistical research can produce more reliable results if researchers pay attention to the rules of scientific inference commonly stated in quantitative research. Also, researchers such as Becker ( 1966 :59; 1970 :42–43) have asserted that, if conducted properly, qualitative research and in particular ethnographic field methods, can lead to more accurate results than quantitative studies, in particular, survey research and laboratory experiments.

Some researchers, such as Kalof, Dan, and Dietz ( 2008 :79) claim that the boundaries between the two approaches are becoming blurred, and Small ( 2009 ) argues that currently much qualitative research (especially in North America) tries unsuccessfully and unnecessarily to emulate quantitative standards. For others, qualitative research tends to be more humanistic and discursive (King et al. 1994 :4). Ragin ( 1994 ), and similarly also Becker, ( 1996 :53), Marchel and Owens ( 2007 :303) think that the main distinction between the two styles is overstated and does not rest on the simple dichotomy of “numbers versus words” (Ragin 1994 :xii). Some claim that quantitative data can be utilized to discover associations, but in order to unveil cause and effect a complex research design involving the use of qualitative approaches needs to be devised (Gilbert 2009 :35). Consequently, qualitative data are useful for understanding the nuances lying beyond those processes as they unfold (Gilbert 2009 :35). Others contend that qualitative research is particularly well suited both to identify causality and to uncover fine descriptive distinctions (Fine and Hallett 2014 ; Lichterman and Isaac Reed 2014 ; Katz 2015 ).

There are other ways to separate these two traditions, including normative statements about what qualitative research should be (that is, better or worse than quantitative approaches, concerned with scientific approaches to societal change or vice versa; Snow and Morrill 1995 ; Denzin and Lincoln 2005 ), or whether it should develop falsifiable statements; Best 2004 ).

We propose that quantitative research is largely concerned with pre-determined variables (Small 2008 ); the analysis concerns the relations between variables. These categories are primarily not questioned in the study, only their frequency or degree, or the correlations between them (cf. Franzosi 2016 ). If a researcher studies wage differences between women and men, he or she works with given categories: x number of men are compared with y number of women, with a certain wage attributed to each person. The idea is not to move beyond the given categories of wage, men and women; they are the starting point as well as the end point, and undergo no “qualitative change.” Qualitative research, in contrast, investigates relations between categories that are themselves subject to change in the research process. Returning to Becker’s study ( 1963 ), we see that he questioned pre-dispositional theories of deviant behavior working with pre-determined variables such as an individual’s combination of personal qualities or emotional problems. His take, in contrast, was to understand marijuana consumption by developing “variables” as part of the investigation. Thereby he presented new variables, or as we would say today, theoretical concepts, but which are grounded in the empirical material.

Qualitative Research

This category contains quotations that refer to descriptions of qualitative research without making comparisons with quantitative research. Researchers such as Denzin and Lincoln, who have written a series of influential handbooks on qualitative methods (1994; Denzin and Lincoln 2003 ; 2005 ), citing Nelson et al. (1992:4), argue that because qualitative research is “interdisciplinary, transdisciplinary, and sometimes counterdisciplinary” it is difficult to derive one single definition of it (Jovanović 2011 :3). According to them, in fact, “the field” is “many things at the same time,” involving contradictions, tensions over its focus, methods, and how to derive interpretations and findings ( 2003 : 11). Similarly, others, such as Flick ( 2007 :ix–x) contend that agreeing on an accepted definition has increasingly become problematic, and that qualitative research has possibly matured different identities. However, Best holds that “the proliferation of many sorts of activities under the label of qualitative sociology threatens to confuse our discussions” ( 2004 :54). Atkinson’s position is more definite: “the current state of qualitative research and research methods is confused” ( 2005 :3–4).

Qualitative research is about interpretation (Blumer 1969 ; Strauss and Corbin 1998 ; Denzin and Lincoln 2003 ), or Verstehen [understanding] (Frankfort-Nachmias and Nachmias 1996 ). It is “multi-method,” involving the collection and use of a variety of empirical materials (Denzin and Lincoln 1998; Silverman 2013 ) and approaches (Silverman 2005 ; Flick 2007 ). It focuses not only on the objective nature of behavior but also on its subjective meanings: individuals’ own accounts of their attitudes, motivations, behavior (McIntyre 2005 :127; Creswell 2009 ), events and situations (Bryman 1989) – what people say and do in specific places and institutions (Goodwin and Horowitz 2002 :35–36) in social and temporal contexts (Morrill and Fine 1997). For this reason, following Weber ([1921-22] 1978), it can be described as an interpretative science (McIntyre 2005 :127). But could quantitative research also be concerned with these questions? Also, as pointed out below, does all qualitative research focus on subjective meaning, as some scholars suggest?

Others also distinguish qualitative research by claiming that it collects data using a naturalistic approach (Denzin and Lincoln 2005 :2; Creswell 2009 ), focusing on the meaning actors ascribe to their actions. But again, does all qualitative research need to be collected in situ? And does qualitative research have to be inherently concerned with meaning? Flick ( 2007 ), referring to Denzin and Lincoln ( 2005 ), mentions conversation analysis as an example of qualitative research that is not concerned with the meanings people bring to a situation, but rather with the formal organization of talk. Still others, such as Ragin ( 1994 :85), note that qualitative research is often (especially early on in the project, we would add) less structured than other kinds of social research – a characteristic connected to its flexibility and that can lead both to potentially better, but also worse results. But is this not a feature of this type of research, rather than a defining description of its essence? Wouldn’t this comment also apply, albeit to varying degrees, to quantitative research?

In addition, Strauss ( 2003 ), along with others, such as Alvesson and Kärreman ( 2011 :10–76), argue that qualitative researchers struggle to capture and represent complex phenomena partially because they tend to collect a large amount of data. While his analysis is correct at some points – “It is necessary to do detailed, intensive, microscopic examination of the data in order to bring out the amazing complexity of what lies in, behind, and beyond those data” (Strauss 2003 :10) – much of his analysis concerns the supposed focus of qualitative research and its challenges, rather than exactly what it is about. But even in this instance we would make a weak case arguing that these are strictly the defining features of qualitative research. Some researchers seem to focus on the approach or the methods used, or even on the way material is analyzed. Several researchers stress the naturalistic assumption of investigating the world, suggesting that meaning and interpretation appear to be a core matter of qualitative research.

We can also see that in this category there is no consensus about specific qualitative methods nor about qualitative data. Many emphasize interpretation, but quantitative research, too, involves interpretation; the results of a regression analysis, for example, certainly have to be interpreted, and the form of meta-analysis that factor analysis provides indeed requires interpretation However, there is no interpretation of quantitative raw data, i.e., numbers in tables. One common thread is that qualitative researchers have to get to grips with their data in order to understand what is being studied in great detail, irrespective of the type of empirical material that is being analyzed. This observation is connected to the fact that qualitative researchers routinely make several adjustments of focus and research design as their studies progress, in many cases until the very end of the project (Kalof et al. 2008 ). If you, like Becker, do not start out with a detailed theory, adjustments such as the emergence and refinement of research questions will occur during the research process. We have thus found a number of useful reflections about qualitative research scattered across different sources, but none of them effectively describe the defining characteristics of this approach.

Although qualitative research does not appear to be defined in terms of a specific method, it is certainly common that fieldwork, i.e., research that entails that the researcher spends considerable time in the field that is studied and use the knowledge gained as data, is seen as emblematic of or even identical to qualitative research. But because we understand that fieldwork tends to focus primarily on the collection and analysis of qualitative data, we expected to find within it discussions on the meaning of “qualitative.” But, again, this was not the case.

Instead, we found material on the history of this approach (for example, Frankfort-Nachmias and Nachmias 1996 ; Atkinson et al. 2001), including how it has changed; for example, by adopting a more self-reflexive practice (Heyl 2001), as well as the different nomenclature that has been adopted, such as fieldwork, ethnography, qualitative research, naturalistic research, participant observation and so on (for example, Lofland et al. 2006 ; Gans 1999 ).

We retrieved definitions of ethnography, such as “the study of people acting in the natural courses of their daily lives,” involving a “resocialization of the researcher” (Emerson 1988 :1) through intense immersion in others’ social worlds (see also examples in Hammersley 2018 ). This may be accomplished by direct observation and also participation (Neuman 2007 :276), although others, such as Denzin ( 1970 :185), have long recognized other types of observation, including non-participant (“fly on the wall”). In this category we have also isolated claims and opposing views, arguing that this type of research is distinguished primarily by where it is conducted (natural settings) (Hughes 1971:496), and how it is carried out (a variety of methods are applied) or, for some most importantly, by involving an active, empathetic immersion in those being studied (Emerson 1988 :2). We also retrieved descriptions of the goals it attends in relation to how it is taught (understanding subjective meanings of the people studied, primarily develop theory, or contribute to social change) (see for example, Corte and Irwin 2017 ; Frankfort-Nachmias and Nachmias 1996 :281; Trier-Bieniek 2012 :639) by collecting the richest possible data (Lofland et al. 2006 ) to derive “thick descriptions” (Geertz 1973 ), and/or to aim at theoretical statements of general scope and applicability (for example, Emerson 1988 ; Fine 2003 ). We have identified guidelines on how to evaluate it (for example Becker 1996 ; Lamont 2004 ) and have retrieved instructions on how it should be conducted (for example, Lofland et al. 2006 ). For instance, analysis should take place while the data gathering unfolds (Emerson 1988 ; Hammersley and Atkinson 2007 ; Lofland et al. 2006 ), observations should be of long duration (Becker 1970 :54; Goffman 1989 ), and data should be of high quantity (Becker 1970 :52–53), as well as other questionable distinctions between fieldwork and other methods:

Field studies differ from other methods of research in that the researcher performs the task of selecting topics, decides what questions to ask, and forges interest in the course of the research itself . This is in sharp contrast to many ‘theory-driven’ and ‘hypothesis-testing’ methods. (Lofland and Lofland 1995 :5)

But could not, for example, a strictly interview-based study be carried out with the same amount of flexibility, such as sequential interviewing (for example, Small 2009 )? Once again, are quantitative approaches really as inflexible as some qualitative researchers think? Moreover, this category stresses the role of the actors’ meaning, which requires knowledge and close interaction with people, their practices and their lifeworld.

It is clear that field studies – which are seen by some as the “gold standard” of qualitative research – are nonetheless only one way of doing qualitative research. There are other methods, but it is not clear why some are more qualitative than others, or why they are better or worse. Fieldwork is characterized by interaction with the field (the material) and understanding of the phenomenon that is being studied. In Becker’s case, he had general experience from fields in which marihuana was used, based on which he did interviews with actual users in several fields.

Grounded Theory

Another major category we identified in our sample is Grounded Theory. We found descriptions of it most clearly in Glaser and Strauss’ ([1967] 2010 ) original articulation, Strauss and Corbin ( 1998 ) and Charmaz ( 2006 ), as well as many other accounts of what it is for: generating and testing theory (Strauss 2003 :xi). We identified explanations of how this task can be accomplished – such as through two main procedures: constant comparison and theoretical sampling (Emerson 1998:96), and how using it has helped researchers to “think differently” (for example, Strauss and Corbin 1998 :1). We also read descriptions of its main traits, what it entails and fosters – for instance, an exceptional flexibility, an inductive approach (Strauss and Corbin 1998 :31–33; 1990; Esterberg 2002 :7), an ability to step back and critically analyze situations, recognize tendencies towards bias, think abstractly and be open to criticism, enhance sensitivity towards the words and actions of respondents, and develop a sense of absorption and devotion to the research process (Strauss and Corbin 1998 :5–6). Accordingly, we identified discussions of the value of triangulating different methods (both using and not using grounded theory), including quantitative ones, and theories to achieve theoretical development (most comprehensively in Denzin 1970 ; Strauss and Corbin 1998 ; Timmermans and Tavory 2012 ). We have also located arguments about how its practice helps to systematize data collection, analysis and presentation of results (Glaser and Strauss [1967] 2010 :16).

Grounded theory offers a systematic approach which requires researchers to get close to the field; closeness is a requirement of identifying questions and developing new concepts or making further distinctions with regard to old concepts. In contrast to other qualitative approaches, grounded theory emphasizes the detailed coding process, and the numerous fine-tuned distinctions that the researcher makes during the process. Within this category, too, we could not find a satisfying discussion of the meaning of qualitative research.

Defining Qualitative Research

In sum, our analysis shows that some notions reappear in the discussion of qualitative research, such as understanding, interpretation, “getting close” and making distinctions. These notions capture aspects of what we think is “qualitative.” However, a comprehensive definition that is useful and that can further develop the field is lacking, and not even a clear picture of its essential elements appears. In other words no definition emerges from our data, and in our research process we have moved back and forth between our empirical data and the attempt to present a definition. Our concrete strategy, as stated above, is to relate qualitative and quantitative research, or more specifically, qualitative and quantitative work. We use an ideal-typical notion of quantitative research which relies on taken for granted and numbered variables. This means that the data consists of variables on different scales, such as ordinal, but frequently ratio and absolute scales, and the representation of the numbers to the variables, i.e. the justification of the assignment of numbers to object or phenomenon, are not questioned, though the validity may be questioned. In this section we return to the notion of quality and try to clarify it while presenting our contribution.

Broadly, research refers to the activity performed by people trained to obtain knowledge through systematic procedures. Notions such as “objectivity” and “reflexivity,” “systematic,” “theory,” “evidence” and “openness” are here taken for granted in any type of research. Next, building on our empirical analysis we explain the four notions that we have identified as central to qualitative work: distinctions, process, closeness, and improved understanding. In discussing them, ultimately in relation to one another, we make their meaning even more precise. Our idea, in short, is that only when these ideas that we present separately for analytic purposes are brought together can we speak of qualitative research.

Distinctions

We believe that the possibility of making new distinctions is one the defining characteristics of qualitative research. It clearly sets it apart from quantitative analysis which works with taken-for-granted variables, albeit as mentioned, meta-analyses, for example, factor analysis may result in new variables. “Quality” refers essentially to distinctions, as already pointed out by Aristotle. He discusses the term “qualitative” commenting: “By a quality I mean that in virtue of which things are said to be qualified somehow” (Aristotle 1984:14). Quality is about what something is or has, which means that the distinction from its environment is crucial. We see qualitative research as a process in which significant new distinctions are made to the scholarly community; to make distinctions is a key aspect of obtaining new knowledge; a point, as we will see, that also has implications for “quantitative research.” The notion of being “significant” is paramount. New distinctions by themselves are not enough; just adding concepts only increases complexity without furthering our knowledge. The significance of new distinctions is judged against the communal knowledge of the research community. To enable this discussion and judgements central elements of rational discussion are required (cf. Habermas [1981] 1987 ; Davidsson [ 1988 ] 2001) to identify what is new and relevant scientific knowledge. Relatedly, Ragin alludes to the idea of new and useful knowledge at a more concrete level: “Qualitative methods are appropriate for in-depth examination of cases because they aid the identification of key features of cases. Most qualitative methods enhance data” (1994:79). When Becker ( 1963 ) studied deviant behavior and investigated how people became marihuana smokers, he made distinctions between the ways in which people learned how to smoke. This is a classic example of how the strategy of “getting close” to the material, for example the text, people or pictures that are subject to analysis, may enable researchers to obtain deeper insight and new knowledge by making distinctions – in this instance on the initial notion of learning how to smoke. Others have stressed the making of distinctions in relation to coding or theorizing. Emerson et al. ( 1995 ), for example, hold that “qualitative coding is a way of opening up avenues of inquiry,” meaning that the researcher identifies and develops concepts and analytic insights through close examination of and reflection on data (Emerson et al. 1995 :151). Goodwin and Horowitz highlight making distinctions in relation to theory-building writing: “Close engagement with their cases typically requires qualitative researchers to adapt existing theories or to make new conceptual distinctions or theoretical arguments to accommodate new data” ( 2002 : 37). In the ideal-typical quantitative research only existing and so to speak, given, variables would be used. If this is the case no new distinction are made. But, would not also many “quantitative” researchers make new distinctions?

Process does not merely suggest that research takes time. It mainly implies that qualitative new knowledge results from a process that involves several phases, and above all iteration. Qualitative research is about oscillation between theory and evidence, analysis and generating material, between first- and second -order constructs (Schütz 1962 :59), between getting in contact with something, finding sources, becoming deeply familiar with a topic, and then distilling and communicating some of its essential features. The main point is that the categories that the researcher uses, and perhaps takes for granted at the beginning of the research process, usually undergo qualitative changes resulting from what is found. Becker describes how he tested hypotheses and let the jargon of the users develop into theoretical concepts. This happens over time while the study is being conducted, exemplifying what we mean by process.

In the research process, a pilot-study may be used to get a first glance of, for example, the field, how to approach it, and what methods can be used, after which the method and theory are chosen or refined before the main study begins. Thus, the empirical material is often central from the start of the project and frequently leads to adjustments by the researcher. Likewise, during the main study categories are not fixed; the empirical material is seen in light of the theory used, but it is also given the opportunity to kick back, thereby resisting attempts to apply theoretical straightjackets (Becker 1970 :43). In this process, coding and analysis are interwoven, and thus are often important steps for getting closer to the phenomenon and deciding what to focus on next. Becker began his research by interviewing musicians close to him, then asking them to refer him to other musicians, and later on doubling his original sample of about 25 to include individuals in other professions (Becker 1973:46). Additionally, he made use of some participant observation, documents, and interviews with opiate users made available to him by colleagues. As his inductive theory of deviance evolved, Becker expanded his sample in order to fine tune it, and test the accuracy and generality of his hypotheses. In addition, he introduced a negative case and discussed the null hypothesis ( 1963 :44). His phasic career model is thus based on a research design that embraces processual work. Typically, process means to move between “theory” and “material” but also to deal with negative cases, and Becker ( 1998 ) describes how discovering these negative cases impacted his research design and ultimately its findings.

Obviously, all research is process-oriented to some degree. The point is that the ideal-typical quantitative process does not imply change of the data, and iteration between data, evidence, hypotheses, empirical work, and theory. The data, quantified variables, are, in most cases fixed. Merging of data, which of course can be done in a quantitative research process, does not mean new data. New hypotheses are frequently tested, but the “raw data is often the “the same.” Obviously, over time new datasets are made available and put into use.

Another characteristic that is emphasized in our sample is that qualitative researchers – and in particular ethnographers – can, or as Goffman put it, ought to ( 1989 ), get closer to the phenomenon being studied and their data than quantitative researchers (for example, Silverman 2009 :85). Put differently, essentially because of their methods qualitative researchers get into direct close contact with those being investigated and/or the material, such as texts, being analyzed. Becker started out his interview study, as we noted, by talking to those he knew in the field of music to get closer to the phenomenon he was studying. By conducting interviews he got even closer. Had he done more observations, he would undoubtedly have got even closer to the field.

Additionally, ethnographers’ design enables researchers to follow the field over time, and the research they do is almost by definition longitudinal, though the time in the field is studied obviously differs between studies. The general characteristic of closeness over time maximizes the chances of unexpected events, new data (related, for example, to archival research as additional sources, and for ethnography for situations not necessarily previously thought of as instrumental – what Mannay and Morgan ( 2015 ) term the “waiting field”), serendipity (Merton and Barber 2004 ; Åkerström 2013 ), and possibly reactivity, as well as the opportunity to observe disrupted patterns that translate into exemplars of negative cases. Two classic examples of this are Becker’s finding of what medical students call “crocks” (Becker et al. 1961 :317), and Geertz’s ( 1973 ) study of “deep play” in Balinese society.

By getting and staying so close to their data – be it pictures, text or humans interacting (Becker was himself a musician) – for a long time, as the research progressively focuses, qualitative researchers are prompted to continually test their hunches, presuppositions and hypotheses. They test them against a reality that often (but certainly not always), and practically, as well as metaphorically, talks back, whether by validating them, or disqualifying their premises – correctly, as well as incorrectly (Fine 2003 ; Becker 1970 ). This testing nonetheless often leads to new directions for the research. Becker, for example, says that he was initially reading psychological theories, but when facing the data he develops a theory that looks at, you may say, everything but psychological dispositions to explain the use of marihuana. Especially researchers involved with ethnographic methods have a fairly unique opportunity to dig up and then test (in a circular, continuous and temporal way) new research questions and findings as the research progresses, and thereby to derive previously unimagined and uncharted distinctions by getting closer to the phenomenon under study.

Let us stress that getting close is by no means restricted to ethnography. The notion of hermeneutic circle and hermeneutics as a general way of understanding implies that we must get close to the details in order to get the big picture. This also means that qualitative researchers can literally also make use of details of pictures as evidence (cf. Harper 2002). Thus, researchers may get closer both when generating the material or when analyzing it.

Quantitative research, we maintain, in the ideal-typical representation cannot get closer to the data. The data is essentially numbers in tables making up the variables (Franzosi 2016 :138). The data may originally have been “qualitative,” but once reduced to numbers there can only be a type of “hermeneutics” about what the number may stand for. The numbers themselves, however, are non-ambiguous. Thus, in quantitative research, interpretation, if done, is not about the data itself—the numbers—but what the numbers stand for. It follows that the interpretation is essentially done in a more “speculative” mode without direct empirical evidence (cf. Becker 2017 ).

Improved Understanding

While distinction, process and getting closer refer to the qualitative work of the researcher, improved understanding refers to its conditions and outcome of this work. Understanding cuts deeper than explanation, which to some may mean a causally verified correlation between variables. The notion of explanation presupposes the notion of understanding since explanation does not include an idea of how knowledge is gained (Manicas 2006 : 15). Understanding, we argue, is the core concept of what we call the outcome of the process when research has made use of all the other elements that were integrated in the research. Understanding, then, has a special status in qualitative research since it refers both to the conditions of knowledge and the outcome of the process. Understanding can to some extent be seen as the condition of explanation and occurs in a process of interpretation, which naturally refers to meaning (Gadamer 1990 ). It is fundamentally connected to knowing, and to the knowing of how to do things (Heidegger [1927] 2001 ). Conceptually the term hermeneutics is used to account for this process. Heidegger ties hermeneutics to human being and not possible to separate from the understanding of being ( 1988 ). Here we use it in a broader sense, and more connected to method in general (cf. Seiffert 1992 ). The abovementioned aspects – for example, “objectivity” and “reflexivity” – of the approach are conditions of scientific understanding. Understanding is the result of a circular process and means that the parts are understood in light of the whole, and vice versa. Understanding presupposes pre-understanding, or in other words, some knowledge of the phenomenon studied. The pre-understanding, even in the form of prejudices, are in qualitative research process, which we see as iterative, questioned, which gradually or suddenly change due to the iteration of data, evidence and concepts. However, qualitative research generates understanding in the iterative process when the researcher gets closer to the data, e.g., by going back and forth between field and analysis in a process that generates new data that changes the evidence, and, ultimately, the findings. Questioning, to ask questions, and put what one assumes—prejudices and presumption—in question, is central to understand something (Heidegger [1927] 2001 ; Gadamer 1990 :368–384). We propose that this iterative process in which the process of understanding occurs is characteristic of qualitative research.

Improved understanding means that we obtain scientific knowledge of something that we as a scholarly community did not know before, or that we get to know something better. It means that we understand more about how parts are related to one another, and to other things we already understand (see also Fine and Hallett 2014 ). Understanding is an important condition for qualitative research. It is not enough to identify correlations, make distinctions, and work in a process in which one gets close to the field or phenomena. Understanding is accomplished when the elements are integrated in an iterative process.

It is, moreover, possible to understand many things, and researchers, just like children, may come to understand new things every day as they engage with the world. This subjective condition of understanding – namely, that a person gains a better understanding of something –is easily met. To be qualified as “scientific,” the understanding must be general and useful to many; it must be public. But even this generally accessible understanding is not enough in order to speak of “scientific understanding.” Though we as a collective can increase understanding of everything in virtually all potential directions as a result also of qualitative work, we refrain from this “objective” way of understanding, which has no means of discriminating between what we gain in understanding. Scientific understanding means that it is deemed relevant from the scientific horizon (compare Schütz 1962 : 35–38, 46, 63), and that it rests on the pre-understanding that the scientists have and must have in order to understand. In other words, the understanding gained must be deemed useful by other researchers, so that they can build on it. We thus see understanding from a pragmatic, rather than a subjective or objective perspective. Improved understanding is related to the question(s) at hand. Understanding, in order to represent an improvement, must be an improvement in relation to the existing body of knowledge of the scientific community (James [ 1907 ] 1955). Scientific understanding is, by definition, collective, as expressed in Weber’s famous note on objectivity, namely that scientific work aims at truths “which … can claim, even for a Chinese, the validity appropriate to an empirical analysis” ([1904] 1949 :59). By qualifying “improved understanding” we argue that it is a general defining characteristic of qualitative research. Becker‘s ( 1966 ) study and other research of deviant behavior increased our understanding of the social learning processes of how individuals start a behavior. And it also added new knowledge about the labeling of deviant behavior as a social process. Few studies, of course, make the same large contribution as Becker’s, but are nonetheless qualitative research.

Understanding in the phenomenological sense, which is a hallmark of qualitative research, we argue, requires meaning and this meaning is derived from the context, and above all the data being analyzed. The ideal-typical quantitative research operates with given variables with different numbers. This type of material is not enough to establish meaning at the level that truly justifies understanding. In other words, many social science explanations offer ideas about correlations or even causal relations, but this does not mean that the meaning at the level of the data analyzed, is understood. This leads us to say that there are indeed many explanations that meet the criteria of understanding, for example the explanation of how one becomes a marihuana smoker presented by Becker. However, we may also understand a phenomenon without explaining it, and we may have potential explanations, or better correlations, that are not really understood.

We may speak more generally of quantitative research and its data to clarify what we see as an important distinction. The “raw data” that quantitative research—as an idealtypical activity, refers to is not available for further analysis; the numbers, once created, are not to be questioned (Franzosi 2016 : 138). If the researcher is to do “more” or “change” something, this will be done by conjectures based on theoretical knowledge or based on the researcher’s lifeworld. Both qualitative and quantitative research is based on the lifeworld, and all researchers use prejudices and pre-understanding in the research process. This idea is present in the works of Heidegger ( 2001 ) and Heisenberg (cited in Franzosi 2010 :619). Qualitative research, as we argued, involves the interaction and questioning of concepts (theory), data, and evidence.

Ragin ( 2004 :22) points out that “a good definition of qualitative research should be inclusive and should emphasize its key strengths and features, not what it lacks (for example, the use of sophisticated quantitative techniques).” We define qualitative research as an iterative process in which improved understanding to the scientific community is achieved by making new significant distinctions resulting from getting closer to the phenomenon studied. Qualitative research, as defined here, is consequently a combination of two criteria: (i) how to do things –namely, generating and analyzing empirical material, in an iterative process in which one gets closer by making distinctions, and (ii) the outcome –improved understanding novel to the scholarly community. Is our definition applicable to our own study? In this study we have closely read the empirical material that we generated, and the novel distinction of the notion “qualitative research” is the outcome of an iterative process in which both deduction and induction were involved, in which we identified the categories that we analyzed. We thus claim to meet the first criteria, “how to do things.” The second criteria cannot be judged but in a partial way by us, namely that the “outcome” —in concrete form the definition-improves our understanding to others in the scientific community.

We have defined qualitative research, or qualitative scientific work, in relation to quantitative scientific work. Given this definition, qualitative research is about questioning the pre-given (taken for granted) variables, but it is thus also about making new distinctions of any type of phenomenon, for example, by coining new concepts, including the identification of new variables. This process, as we have discussed, is carried out in relation to empirical material, previous research, and thus in relation to theory. Theory and previous research cannot be escaped or bracketed. According to hermeneutic principles all scientific work is grounded in the lifeworld, and as social scientists we can thus never fully bracket our pre-understanding.

We have proposed that quantitative research, as an idealtype, is concerned with pre-determined variables (Small 2008 ). Variables are epistemically fixed, but can vary in terms of dimensions, such as frequency or number. Age is an example; as a variable it can take on different numbers. In relation to quantitative research, qualitative research does not reduce its material to number and variables. If this is done the process of comes to a halt, the researcher gets more distanced from her data, and it makes it no longer possible to make new distinctions that increase our understanding. We have above discussed the components of our definition in relation to quantitative research. Our conclusion is that in the research that is called quantitative there are frequent and necessary qualitative elements.

Further, comparative empirical research on researchers primarily working with ”quantitative” approaches and those working with ”qualitative” approaches, we propose, would perhaps show that there are many similarities in practices of these two approaches. This is not to deny dissimilarities, or the different epistemic and ontic presuppositions that may be more or less strongly associated with the two different strands (see Goertz and Mahoney 2012 ). Our point is nonetheless that prejudices and preconceptions about researchers are unproductive, and that as other researchers have argued, differences may be exaggerated (e.g., Becker 1996 : 53, 2017 ; Marchel and Owens 2007 :303; Ragin 1994 ), and that a qualitative dimension is present in both kinds of work.

Several things follow from our findings. The most important result is the relation to quantitative research. In our analysis we have separated qualitative research from quantitative research. The point is not to label individual researchers, methods, projects, or works as either “quantitative” or “qualitative.” By analyzing, i.e., taking apart, the notions of quantitative and qualitative, we hope to have shown the elements of qualitative research. Our definition captures the elements, and how they, when combined in practice, generate understanding. As many of the quotations we have used suggest, one conclusion of our study holds that qualitative approaches are not inherently connected with a specific method. Put differently, none of the methods that are frequently labelled “qualitative,” such as interviews or participant observation, are inherently “qualitative.” What matters, given our definition, is whether one works qualitatively or quantitatively in the research process, until the results are produced. Consequently, our analysis also suggests that those researchers working with what in the literature and in jargon is often called “quantitative research” are almost bound to make use of what we have identified as qualitative elements in any research project. Our findings also suggest that many” quantitative” researchers, at least to some extent, are engaged with qualitative work, such as when research questions are developed, variables are constructed and combined, and hypotheses are formulated. Furthermore, a research project may hover between “qualitative” and “quantitative” or start out as “qualitative” and later move into a “quantitative” (a distinct strategy that is not similar to “mixed methods” or just simply combining induction and deduction). More generally speaking, the categories of “qualitative” and “quantitative,” unfortunately, often cover up practices, and it may lead to “camps” of researchers opposing one another. For example, regardless of the researcher is primarily oriented to “quantitative” or “qualitative” research, the role of theory is neglected (cf. Swedberg 2017 ). Our results open up for an interaction not characterized by differences, but by different emphasis, and similarities.

Let us take two examples to briefly indicate how qualitative elements can fruitfully be combined with quantitative. Franzosi ( 2010 ) has discussed the relations between quantitative and qualitative approaches, and more specifically the relation between words and numbers. He analyzes texts and argues that scientific meaning cannot be reduced to numbers. Put differently, the meaning of the numbers is to be understood by what is taken for granted, and what is part of the lifeworld (Schütz 1962 ). Franzosi shows how one can go about using qualitative and quantitative methods and data to address scientific questions analyzing violence in Italy at the time when fascism was rising (1919–1922). Aspers ( 2006 ) studied the meaning of fashion photographers. He uses an empirical phenomenological approach, and establishes meaning at the level of actors. In a second step this meaning, and the different ideal-typical photographers constructed as a result of participant observation and interviews, are tested using quantitative data from a database; in the first phase to verify the different ideal-types, in the second phase to use these types to establish new knowledge about the types. In both of these cases—and more examples can be found—authors move from qualitative data and try to keep the meaning established when using the quantitative data.

A second main result of our study is that a definition, and we provided one, offers a way for research to clarify, and even evaluate, what is done. Hence, our definition can guide researchers and students, informing them on how to think about concrete research problems they face, and to show what it means to get closer in a process in which new distinctions are made. The definition can also be used to evaluate the results, given that it is a standard of evaluation (cf. Hammersley 2007 ), to see whether new distinctions are made and whether this improves our understanding of what is researched, in addition to the evaluation of how the research was conducted. By making what is qualitative research explicit it becomes easier to communicate findings, and it is thereby much harder to fly under the radar with substandard research since there are standards of evaluation which make it easier to separate “good” from “not so good” qualitative research.

To conclude, our analysis, which ends with a definition of qualitative research can thus both address the “internal” issues of what is qualitative research, and the “external” critiques that make it harder to do qualitative research, to which both pressure from quantitative methods and general changes in society contribute.

Acknowledgements

Financial Support for this research is given by the European Research Council, CEV (263699). The authors are grateful to Susann Krieglsteiner for assistance in collecting the data. The paper has benefitted from the many useful comments by the three reviewers and the editor, comments by members of the Uppsala Laboratory of Economic Sociology, as well as Jukka Gronow, Sebastian Kohl, Marcin Serafin, Richard Swedberg, Anders Vassenden and Turid Rødne.

Biographies

is professor of sociology at the Department of Sociology, Uppsala University and Universität St. Gallen. His main focus is economic sociology, and in particular, markets. He has published numerous articles and books, including Orderly Fashion (Princeton University Press 2010), Markets (Polity Press 2011) and Re-Imagining Economic Sociology (edited with N. Dodd, Oxford University Press 2015). His book Ethnographic Methods (in Swedish) has already gone through several editions.

is associate professor of sociology at the Department of Media and Social Sciences, University of Stavanger. His research has been published in journals such as Social Psychology Quarterly, Sociological Theory, Teaching Sociology, and Music and Arts in Action. As an ethnographer he is working on a book on he social world of big-wave surfing.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Patrik Aspers, Email: [email protected] .

Ugo Corte, Email: [email protected] .

  • Åkerström M. Curiosity and serendipity in qualitative research. Qualitative Sociology Review. 2013; 9 (2):10–18. [ Google Scholar ]
  • Alford, Robert R. 1998. The craft of inquiry. Theories, methods, evidence . Oxford: Oxford University Press.
  • Alvesson M, Kärreman D. Qualitative research and theory development . Mystery as method . London: SAGE Publications; 2011. [ Google Scholar ]
  • Aspers, Patrik. 2006. Markets in Fashion, A Phenomenological Approach. London Routledge.
  • Atkinson P. Qualitative research. Unity and diversity. Forum: Qualitative Social Research. 2005; 6 (3):1–15. [ Google Scholar ]
  • Becker HS. Outsiders. Studies in the sociology of deviance . New York: The Free Press; 1963. [ Google Scholar ]
  • Becker HS. Whose side are we on? Social Problems. 1966; 14 (3):239–247. [ Google Scholar ]
  • Becker HS. Sociological work. Method and substance. New Brunswick: Transaction Books; 1970. [ Google Scholar ]
  • Becker HS. The epistemology of qualitative research. In: Richard J, Anne C, Shweder RA, editors. Ethnography and human development. Context and meaning in social inquiry. Chicago: University of Chicago Press; 1996. pp. 53–71. [ Google Scholar ]
  • Becker HS. Tricks of the trade. How to think about your research while you're doing it. Chicago: University of Chicago Press; 1998. [ Google Scholar ]
  • Becker, Howard S. 2017. Evidence . Chigaco: University of Chicago Press.
  • Becker H, Geer B, Hughes E, Strauss A. Boys in White, student culture in medical school. New Brunswick: Transaction Publishers; 1961. [ Google Scholar ]
  • Berezin M. How do we know what we mean? Epistemological dilemmas in cultural sociology. Qualitative Sociology. 2014; 37 (2):141–151. [ Google Scholar ]
  • Best, Joel. 2004. Defining qualitative research. In Workshop on Scientific Foundations of Qualitative Research , eds . Charles, Ragin, Joanne, Nagel, and Patricia White, 53-54. http://www.nsf.gov/pubs/2004/nsf04219/nsf04219.pdf .
  • Biernacki R. Humanist interpretation versus coding text samples. Qualitative Sociology. 2014; 37 (2):173–188. [ Google Scholar ]
  • Blumer H. Symbolic interactionism: Perspective and method. Berkeley: University of California Press; 1969. [ Google Scholar ]
  • Brady H, Collier D, Seawright J. Refocusing the discussion of methodology. In: Henry B, David C, editors. Rethinking social inquiry. Diverse tools, shared standards. Lanham: Rowman and Littlefield; 2004. pp. 3–22. [ Google Scholar ]
  • Brown AP. Qualitative method and compromise in applied social research. Qualitative Research. 2010; 10 (2):229–248. [ Google Scholar ]
  • Charmaz K. Constructing grounded theory. London: Sage; 2006. [ Google Scholar ]
  • Corte, Ugo, and Katherine Irwin. 2017. “The Form and Flow of Teaching Ethnographic Knowledge: Hands-on Approaches for Learning Epistemology” Teaching Sociology 45(3): 209-219.
  • Creswell JW. Research design. Qualitative, quantitative, and mixed method approaches. 3. Thousand Oaks: SAGE Publications; 2009. [ Google Scholar ]
  • Davidsson D. The myth of the subjective. In: Davidsson D, editor. Subjective, intersubjective, objective. Oxford: Oxford University Press; 1988. pp. 39–52. [ Google Scholar ]
  • Denzin NK. The research act: A theoretical introduction to Ssociological methods. Chicago: Aldine Publishing Company Publishers; 1970. [ Google Scholar ]
  • Denzin NK, Lincoln YS. Introduction. The discipline and practice of qualitative research. In: Denzin NK, Lincoln YS, editors. Collecting and interpreting qualitative materials. Thousand Oaks: SAGE Publications; 2003. pp. 1–45. [ Google Scholar ]
  • Denzin NK, Lincoln YS. Introduction. The discipline and practice of qualitative research. In: Denzin NK, Lincoln YS, editors. The Sage handbook of qualitative research. Thousand Oaks: SAGE Publications; 2005. pp. 1–32. [ Google Scholar ]
  • Emerson RM, editor. Contemporary field research. A collection of readings. Prospect Heights: Waveland Press; 1988. [ Google Scholar ]
  • Emerson RM, Fretz RI, Shaw LL. Writing ethnographic fieldnotes. Chicago: University of Chicago Press; 1995. [ Google Scholar ]
  • Esterberg KG. Qualitative methods in social research. Boston: McGraw-Hill; 2002. [ Google Scholar ]
  • Fine, Gary Alan. 1995. Review of “handbook of qualitative research.” Contemporary Sociology 24 (3): 416–418.
  • Fine, Gary Alan. 2003. “ Toward a Peopled Ethnography: Developing Theory from Group Life.” Ethnography . 4(1):41-60.
  • Fine GA, Hancock BH. The new ethnographer at work. Qualitative Research. 2017; 17 (2):260–268. [ Google Scholar ]
  • Fine GA, Hallett T. Stranger and stranger: Creating theory through ethnographic distance and authority. Journal of Organizational Ethnography. 2014; 3 (2):188–203. [ Google Scholar ]
  • Flick U. Qualitative research. State of the art. Social Science Information. 2002; 41 (1):5–24. [ Google Scholar ]
  • Flick U. Designing qualitative research. London: SAGE Publications; 2007. [ Google Scholar ]
  • Frankfort-Nachmias C, Nachmias D. Research methods in the social sciences. 5. London: Edward Arnold; 1996. [ Google Scholar ]
  • Franzosi R. Sociology, narrative, and the quality versus quantity debate (Goethe versus Newton): Can computer-assisted story grammars help us understand the rise of Italian fascism (1919- 1922)? Theory and Society. 2010; 39 (6):593–629. [ Google Scholar ]
  • Franzosi R. From method and measurement to narrative and number. International journal of social research methodology. 2016; 19 (1):137–141. [ Google Scholar ]
  • Gadamer, Hans-Georg. 1990. Wahrheit und Methode, Grundzüge einer philosophischen Hermeneutik . Band 1, Hermeneutik. Tübingen: J.C.B. Mohr.
  • Gans H. Participant Observation in an Age of “Ethnography” Journal of Contemporary Ethnography. 1999; 28 (5):540–548. [ Google Scholar ]
  • Geertz C. The interpretation of cultures. New York: Basic Books; 1973. [ Google Scholar ]
  • Gilbert N. Researching social life. 3. London: SAGE Publications; 2009. [ Google Scholar ]
  • Glaeser A. Hermeneutic institutionalism: Towards a new synthesis. Qualitative Sociology. 2014; 37 :207–241. [ Google Scholar ]
  • Glaser, Barney G., and Anselm L. Strauss. [1967] 2010. The discovery of grounded theory. Strategies for qualitative research. Hawthorne: Aldine.
  • Goertz G, Mahoney J. A tale of two cultures: Qualitative and quantitative research in the social sciences. Princeton: Princeton University Press; 2012. [ Google Scholar ]
  • Goffman E. On fieldwork. Journal of Contemporary Ethnography. 1989; 18 (2):123–132. [ Google Scholar ]
  • Goodwin J, Horowitz R. Introduction. The methodological strengths and dilemmas of qualitative sociology. Qualitative Sociology. 2002; 25 (1):33–47. [ Google Scholar ]
  • Habermas, Jürgen. [1981] 1987. The theory of communicative action . Oxford: Polity Press.
  • Hammersley M. The issue of quality in qualitative research. International Journal of Research & Method in Education. 2007; 30 (3):287–305. [ Google Scholar ]
  • Hammersley, Martyn. 2013. What is qualitative research? Bloomsbury Publishing.
  • Hammersley M. What is ethnography? Can it survive should it? Ethnography and Education. 2018; 13 (1):1–17. [ Google Scholar ]
  • Hammersley M, Atkinson P. Ethnography . Principles in practice . London: Tavistock Publications; 2007. [ Google Scholar ]
  • Heidegger M. Sein und Zeit. Tübingen: Max Niemeyer Verlag; 2001. [ Google Scholar ]
  • Heidegger, Martin. 1988. 1923. Ontologie. Hermeneutik der Faktizität, Gesamtausgabe II. Abteilung: Vorlesungen 1919-1944, Band 63, Frankfurt am Main: Vittorio Klostermann.
  • Hempel CG. Philosophy of the natural sciences. Upper Saddle River: Prentice Hall; 1966. [ Google Scholar ]
  • Hood JC. Teaching against the text. The case of qualitative methods. Teaching Sociology. 2006; 34 (3):207–223. [ Google Scholar ]
  • James W. Pragmatism. New York: Meredian Books; 1907. [ Google Scholar ]
  • Jovanović G. Toward a social history of qualitative research. History of the Human Sciences. 2011; 24 (2):1–27. [ Google Scholar ]
  • Kalof L, Dan A, Dietz T. Essentials of social research. London: Open University Press; 2008. [ Google Scholar ]
  • Katz J. Situational evidence: Strategies for causal reasoning from observational field notes. Sociological Methods & Research. 2015; 44 (1):108–144. [ Google Scholar ]
  • King G, Keohane RO, Sidney S, Verba S. Scientific inference in qualitative research. Princeton: Princeton University Press; 1994. Designing social inquiry. [ Google Scholar ]
  • Lamont M. Evaluating qualitative research: Some empirical findings and an agenda. In: Lamont M, White P, editors. Report from workshop on interdisciplinary standards for systematic qualitative research. Washington, DC: National Science Foundation; 2004. pp. 91–95. [ Google Scholar ]
  • Lamont M, Swidler A. Methodological pluralism and the possibilities and limits of interviewing. Qualitative Sociology. 2014; 37 (2):153–171. [ Google Scholar ]
  • Lazarsfeld P, Barton A. Some functions of qualitative analysis in social research. In: Kendall P, editor. The varied sociology of Paul Lazarsfeld. New York: Columbia University Press; 1982. pp. 239–285. [ Google Scholar ]
  • Lichterman, Paul, and Isaac Reed I (2014), Theory and Contrastive Explanation in Ethnography. Sociological methods and research. Prepublished 27 October 2014; 10.1177/0049124114554458.
  • Lofland J, Lofland L. Analyzing social settings. A guide to qualitative observation and analysis. 3. Belmont: Wadsworth; 1995. [ Google Scholar ]
  • Lofland J, Snow DA, Anderson L, Lofland LH. Analyzing social settings. A guide to qualitative observation and analysis. 4. Belmont: Wadsworth/Thomson Learning; 2006. [ Google Scholar ]
  • Long AF, Godfrey M. An evaluation tool to assess the quality of qualitative research studies. International Journal of Social Research Methodology. 2004; 7 (2):181–196. [ Google Scholar ]
  • Lundberg G. Social research: A study in methods of gathering data. New York: Longmans, Green and Co.; 1951. [ Google Scholar ]
  • Malinowski B. Argonauts of the Western Pacific: An account of native Enterprise and adventure in the archipelagoes of Melanesian New Guinea. London: Routledge; 1922. [ Google Scholar ]
  • Manicas P. A realist philosophy of science: Explanation and understanding. Cambridge: Cambridge University Press; 2006. [ Google Scholar ]
  • Marchel C, Owens S. Qualitative research in psychology. Could William James get a job? History of Psychology. 2007; 10 (4):301–324. [ PubMed ] [ Google Scholar ]
  • McIntyre LJ. Need to know. Social science research methods. Boston: McGraw-Hill; 2005. [ Google Scholar ]
  • Merton RK, Barber E. The travels and adventures of serendipity . A Study in Sociological Semantics and the Sociology of Science. Princeton: Princeton University Press; 2004. [ Google Scholar ]
  • Mannay D, Morgan M. Doing ethnography or applying a qualitative technique? Reflections from the ‘waiting field‘ Qualitative Research. 2015; 15 (2):166–182. [ Google Scholar ]
  • Neuman LW. Basics of social research. Qualitative and quantitative approaches. 2. Boston: Pearson Education; 2007. [ Google Scholar ]
  • Ragin CC. Constructing social research. The unity and diversity of method. Thousand Oaks: Pine Forge Press; 1994. [ Google Scholar ]
  • Ragin, Charles C. 2004. Introduction to session 1: Defining qualitative research. In Workshop on Scientific Foundations of Qualitative Research , 22, ed. Charles C. Ragin, Joane Nagel, Patricia White. http://www.nsf.gov/pubs/2004/nsf04219/nsf04219.pdf
  • Rawls, Anne. 2018. The Wartime narrative in US sociology, 1940–7: Stigmatizing qualitative sociology in the name of ‘science,’ European Journal of Social Theory (Online first).
  • Schütz A. Collected papers I: The problem of social reality. The Hague: Nijhoff; 1962. [ Google Scholar ]
  • Seiffert H. Einführung in die Hermeneutik. Tübingen: Franke; 1992. [ Google Scholar ]
  • Silverman D. Doing qualitative research. A practical handbook. 2. London: SAGE Publications; 2005. [ Google Scholar ]
  • Silverman D. A very short, fairly interesting and reasonably cheap book about qualitative research. London: SAGE Publications; 2009. [ Google Scholar ]
  • Silverman D. What counts as qualitative research? Some cautionary comments. Qualitative Sociology Review. 2013; 9 (2):48–55. [ Google Scholar ]
  • Small ML. “How many cases do I need?” on science and the logic of case selection in field-based research. Ethnography. 2009; 10 (1):5–38. [ Google Scholar ]
  • Small, Mario L 2008. Lost in translation: How not to make qualitative research more scientific. In Workshop on interdisciplinary standards for systematic qualitative research, ed in Michelle Lamont, and Patricia White, 165–171. Washington, DC: National Science Foundation.
  • Snow DA, Anderson L. Down on their luck: A study of homeless street people. Berkeley: University of California Press; 1993. [ Google Scholar ]
  • Snow DA, Morrill C. New ethnographies: Review symposium: A revolutionary handbook or a handbook for revolution? Journal of Contemporary Ethnography. 1995; 24 (3):341–349. [ Google Scholar ]
  • Strauss AL. Qualitative analysis for social scientists. 14. Chicago: Cambridge University Press; 2003. [ Google Scholar ]
  • Strauss AL, Corbin JM. Basics of qualitative research. Techniques and procedures for developing grounded theory. 2. Thousand Oaks: Sage Publications; 1998. [ Google Scholar ]
  • Swedberg, Richard. 2017. Theorizing in sociological research: A new perspective, a new departure? Annual Review of Sociology 43: 189–206.
  • Swedberg R. The new 'Battle of Methods'. Challenge January–February. 1990; 3 (1):33–38. [ Google Scholar ]
  • Timmermans S, Tavory I. Theory construction in qualitative research: From grounded theory to abductive analysis. Sociological Theory. 2012; 30 (3):167–186. [ Google Scholar ]
  • Trier-Bieniek A. Framing the telephone interview as a participant-centred tool for qualitative research. A methodological discussion. Qualitative Research. 2012; 12 (6):630–644. [ Google Scholar ]
  • Valsiner J. Data as representations. Contextualizing qualitative and quantitative research strategies. Social Science Information. 2000; 39 (1):99–113. [ Google Scholar ]
  • Weber, Max. 1904. 1949. Objectivity’ in social Science and social policy. Ed. Edward A. Shils and Henry A. Finch, 49–112. New York: The Free Press.

VIDEO

  1. Qualitative Research Analysis Approaches

  2. Qualitative and Quantitative Research

  3. TEMPLATE GUIDE FOR WRITING CHAPTER 5, FINDINGS, CONCLUSION AND RECOMMENDATIONS

  4. Difference between Qualitative research and Quantitative research

  5. How to write a research paper conclusion

  6. Drafting Manuscript for Scopus Free Publication

COMMENTS

  1. Q: How is the conclusion drawn in qualitative research?

    Having said that, the conclusion of a qualitative study can at times be quite detailed. This would depend on the complexity of the study. A questionnaire about likes and dislikes is simpler to score, interpret, and infer than a focus group, interview, or case study. In the case of a simpler study, you may reiterate the key findings of the study ...

  2. Chapter 21. Conclusion: The Value of Qualitative Research

    Conclusion: The Value of Qualitative Research Qualitative research is engaging research, in the best sense of the word. Definition. ... Excellent qualitative research does a great job describing (whether through "thick description" or illustrative quotes) a phenomenon, case, or setting and generates deeper insight into the social world ...

  3. Qualitative Study

    Qualitative research is a type of research that explores and provides deeper insights into real-world problems.[1] Instead of collecting numerical data points or intervene or introduce treatments just like in quantitative research, qualitative research helps generate hypotheses as well as further investigate and understand quantitative data. Qualitative research gathers participants ...

  4. What Is Qualitative Research?

    Qualitative research is commonly used in the humanities and social sciences, in subjects such as anthropology, sociology, education, health sciences, history, etc. ... Despite rigorous analysis procedures, it is difficult to draw generalizable conclusions because the data may be biased and unrepresentative of the wider population.

  5. Writing a Research Paper Conclusion

    Table of contents. Step 1: Restate the problem. Step 2: Sum up the paper. Step 3: Discuss the implications. Research paper conclusion examples. Frequently asked questions about research paper conclusions.

  6. How to use and assess qualitative research methods

    Qualitative research is defined as "the study of the nature of phenomena", including "their quality, different manifestations, the context in which they appear or the perspectives from which they can be perceived ... Conclusion. The main take-away points of this paper are summarised in Table ...

  7. A Practical Guide to Writing Quantitative and Qualitative Research

    Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. ... CONCLUSION. Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study.

  8. Planning Qualitative Research: Design and Decision Making for New

    Qualitative research draws from interpretivist and constructivist paradigms, ... Conclusions. In this article, we provide an overview of four qualitative approaches and how each approach links to specific types of data collection and analysis. Through this concise resource, we believe novice qualitative researchers will be able to scope and ...

  9. 9. The Conclusion

    The conclusion is intended to help the reader understand why your research should matter to them after they have finished reading the paper. A conclusion is not merely a summary of the main topics covered or a re-statement of your research problem, but a synthesis of key points and, if applicable, where you recommend new areas for future research.

  10. Criteria for Good Qualitative Research: A Comprehensive Review

    This review aims to synthesize a published set of evaluative criteria for good qualitative research. The aim is to shed light on existing standards for assessing the rigor of qualitative research encompassing a range of epistemological and ontological standpoints. Using a systematic search strategy, published journal articles that deliberate criteria for rigorous research were identified. Then ...

  11. How to Write a Conclusion for Research Papers (with Examples)

    A conclusion in a research paper is the final section where you summarize and wrap up your research, presenting the key findings and insights derived from your study. The research paper conclusion is not the place to introduce new information or data that was not discussed in the main body of the paper.

  12. How to Write a Thesis or Dissertation Conclusion

    Step 2: Summarize and reflect on your research. Step 3: Make future recommendations. Step 4: Emphasize your contributions to your field. Step 5: Wrap up your thesis or dissertation. Full conclusion example. Conclusion checklist. Other interesting articles. Frequently asked questions about conclusion sections.

  13. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  14. What is Qualitative in Qualitative Research

    What is qualitative research? If we look for a precise definition of qualitative research, and specifically for one that addresses its distinctive feature of being "qualitative," the literature is meager. In this article we systematically search, identify and analyze a sample of 89 sources using or attempting to define the term "qualitative." Then, drawing on ideas we find scattered ...

  15. Qualitative Research

    Qualitative Research. Qualitative research is a type of research methodology that focuses on exploring and understanding people's beliefs, attitudes, behaviors, and experiences through the collection and analysis of non-numerical data. It seeks to answer research questions through the examination of subjective data, such as interviews, focus groups, observations, and textual analysis.

  16. Introduction to qualitative research methods

    INTRODUCTION. Qualitative research methods refer to techniques of investigation that rely on nonstatistical and nonnumerical methods of data collection, analysis, and evidence production. Qualitative research techniques provide a lens for learning about nonquantifiable phenomena such as people's experiences, languages, histories, and cultures.

  17. What is Qualitative Research? Definition, Types, Examples ...

    Qualitative research is defined as an exploratory method that aims to understand complex phenomena, often within their natural settings, by examining subjective experiences, beliefs, attitudes, and behaviors. Unlike quantitative research, which focuses on numerical measurements and statistical analysis, qualitative research employs a range of ...

  18. The Central Role of Theory in Qualitative Research

    The use of theory in science is an ongoing debate in the production of knowledge. Related to qualitative research methods, a variety of approaches have been set forth in the literature using the terms conceptual framework, theoretical framework, paradigm, and epistemology.

  19. Full article: A practical guide to reflexivity in qualitative research

    Qualitative research relies on nuanced judgements that require researcher reflexivity, yet reflexivity is often addressed superficially or overlooked completely during the research process. In this AMEE Guide, we define reflexivity as a set of continuous, collaborative, and multifaceted practices through which researchers self-consciously ...

  20. 9 methodologies for a successful qualitative research assignment

    Conclusion . Writing a qualitative research assignment is crucial, especially if you want to engage in research activities for your master's thesis. Most researchers choose this method because ...

  21. Qualitative Research: Getting Started

    CONCLUSIONS. Qualitative research offers unique opportunities for understanding complex, nuanced situations where interpersonal ambiguity and multiple interpretations exist. Qualitative research may not provide definitive answers to such complex questions, but it can yield a better understanding and a springboard for further focused work. ...

  22. Full article: What are the experiences of people with motor and sensory

    Qualitative research has the potential to highlight marginalised experiences, restore agency and connection, ... Conclusions. This review highlights that people with motor and sensory FND, PPPD and drop attacks experience significant disability, stigma, frequent negative interactions with healthcare professionals and systems, underpinned by ...

  23. Emergency department communication with diverse caregivers and persons

    Research to date has detailed numerous challenges in emergency department (ED) communication with persons living with dementia (PLWD) and their caregivers. However, little is known about communication experiences of individuals belonging to minoritized racial and ethnic groups, who are disproportionately impacted by dementia and less likely to ...

  24. Journal of Medical Internet Research

    Background: Multiple chronic conditions (multimorbidity) are becoming more prevalent among aging populations. Digital health technologies have the potential to assist in the self-management of multimorbidity, improving the awareness and monitoring of health and well-being, supporting a better understanding of the disease, and encouraging behavior change.

  25. Qualitative Methods in Health Care Research

    Conclusions. Qualitative research studies are being widely acknowledged and recognized in health care practice. This overview illustrates various qualitative methods and shows how these methods can be used to generate evidence that informs clinical practice. Qualitative research helps to understand the patterns of health behaviors, describe ...

  26. What is Qualitative in Qualitative Research

    Qualitative research involves the studied use and collection of a variety of empirical materials - case study, personal experience, introspective, life story, interview, observational, historical, interactional, and visual texts - that describe routine and problematic moments and meanings in individuals' lives.